
Practical Azure
Functions

A Guide to Web, Mobile, and
IoT Applications
—
Agus Kurniawan
Wely Lau

Practical Azure
Functions

A Guide to Web, Mobile, and
IoT Applications

Agus Kurniawan
Wely Lau

Practical Azure Functions: A Guide to Web, Mobile, and IoT
Applications

ISBN-13 (pbk): 978-1-4842-5066-2		 ISBN-13 (electronic): 978-1-4842-5067-9
https://doi.org/10.1007/978-1-4842-5067-9

Copyright © 2019 by Agus Kurniawan, Wely Lau

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-5066-2. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Agus Kurniawan
Fakultas Ilmu Komputer,
Universitas Indonesia, Depok, Indonesia

Wely Lau
Singapore, Singapore

https://doi.org/10.1007/978-1-4842-5067-9

To my wife, Ela and two children, Thariq and Zahra.
— Agus K

To my dearest wife Shirley and two little sweethearts, Aiden
and Aileen. Without your support, I wouldn’t have been

able to complete this book.

To my parents, who raised me up to be who I am today.
Genuine gratitude to you.

To my wonderful readers, thank you for taking your
time to read this book. I sincerely hope this book elevates
your knowledge on serverless computing to another level.

— Wely Lau, 2019

v

Chapter 1: Introduction to Azure Functions���1

An Overview of Serverless Computing���2

Introduction to Azure Functions���3

Supported Languages��4

Function Runtime���4

Why Azure Functions?��5

Setting Up the Development Environment���6

Building a Simple Azure Functions Program��8

Creating a Project���9

Creating a function in a function app���12

Running the Application���16

Accessing Azure Functions in the Azure Portal��17

Comparing Azure Functions to Logic Apps���19

Summary���21

Chapter 2: Azure Functions Programming��23

Exploring the Azure Functions Programming Model��23

Triggers���23

Input Bindings��24

Output Bindings��24

Table of Contents

About the Authors���xi

About the Technical Reviewer��xiii

vi

Creating Functions from a Template or the Quickstart��26

Creating Functions from a Template���26

Creating Functions from the Quickstart��27

Using Webhook + API���28

Integrate Menu���29

Manage Menu���34

Use Cases of Webhook + API��34

Setting Up a Timer-Based Function��35

Using a CRON Expression in NCrontab���35

Creating a Timer-Based Function���36

Exploring Use Cases for Timer-Based Functions��37

Messaging with the Azure Service Bus Queue Trigger Template�������������������������38

Creating an Azure Service Bus���39

Creating an Azure Functions Function with a Service Bus Queue Trigger������41

Preparing SendGrid��44

Adding an E-mail Address as an Output Binding��44

Updating the Azure Function Code���45

Testing the Service Bus Queue Trigger Function��46

Summary���49

Chapter 3: Accessing Data from Azure Functions�������������������������������51

Overview of Azure SQL Database���51

Using Visual Studio 2019���52

Creating Your SQL Database��56

Configuring a Firewall for a SQL Database Server���60

Connecting Azure SQL Database with SQL Server Management Studio��������������61

Configuring Azure Functions in Visual Studio��68

Writing Azure Functions Code in VS���71

Table of ContentsTable of Contents

vii

Running and Testing Azure Function Locally��75

Deploying to Azure Functions���76

Running and Testing Function Apps in the Cloud���78

Summary���79

Chapter 4: Accessing Cosmos DB in Azure Functions�������������������������81

Introduction to NoSQL Databases and Azure Cosmos DB������������������������������������81

Provisioning an Azure Cosmos DB Account���83

Dealing with Databases, Containers, and Items���87

Cosmos DB Trigger in Azure Functions��89

Cosmos DB Bindings in Azure Functions���97

Summary���102

Chapter 5: Web Back-End System���103

Introduction to Azure Functions for Web Applications���������������������������������������103

Building a To-Do Web Application��104

Creating an Azure SQL Database Instance ��105

Creating an Azure Functions Project��107

Developing an Azure Functions Program��109

Deploying Your Azure Functions Project���115

Testing Azure Functions���117

Developing a Client Web Application��122

Summary���128

Chapter 6: Mobile Back End��129

Reviewing Mobile Platforms��129

Introducing Azure Functions for Mobile Applications���130

Building a Registration Mobile Application��132

Creating an Azure SQL Database Instance���132

Table of ContentsTable of Contents

viii

Creating an Azure Functions Project��135

Publishing an Azure Functions Program���140

Testing an Azure Functions Program��142

Developing an Android Application���144

Summary���152

Chapter 7: Serverless Microservices���153

Introducing Microservices���153

Implementing Microservices with Azure Functions���157

Building a Microservices System with Azure Functions������������������������������������157

Creating an Azure SQL Database Instance���158

Creating an Azure Functions Project��160

Publishing Azure Functions��166

Testing the OrderHttpApi Function��169

Sending Orders to Azure Storage Queue��171

Summary���175

Chapter 8: IoT Telemetry System���177

Introducing the IoT Telemetry System���177

Integrating IoT Telemetry and Azure Functions��178

IoT Telemetry Data Processing���180

Creating an Azure SQL Database Instance���180

Setting Up Azure IoT Hub��183

Creating an Azure Functions Project for the IoT���186

Publishing an Azure Functions Project���191

Testing Your Azure Functions Projects��193

Developing an IoT Program��195

IoT Telemetry with the Arduino MKR1000��201

Hardware Wiring���202

Table of ContentsTable of Contents

ix

Installing and Configuring the Arduino Software��203

Writing a Sketch Program��204

Updating an SSL Certificate for Azure IoT Hub���208

Testing the Program���210

Summary���211

Chapter 9: Monitoring Azure Functions with
Application Insights���213

Introduction to Application Insights���213

Provisioning Application Insights���215

Integrating Application Insights to Azure Functions���217

Detecting Failures and Errors in Azure Functions with App Insights�����������������220

Simulating Failures in Azure Functions��220

Viewing Failure Details in App Insights��224

Load Testing, Autoscaling, and Real-Time Monitoring���������������������������������������228

Preparing Your Code���228

Publishing to Azure���231

Generating the Load with Performance Testing���232

Monitoring the Live Stream Metric During a Performance Test��������������������236

Cooldown Period and Result of Performance Testing�����������������������������������238

Summary���239

Index��241

Table of ContentsTable of Contents

xi

About the Authors

Agus Kurniawan is a lecturer, IT consultant, and author. He has 15 years

of experience working on various software and hardware development

projects, delivering materials in training and workshops, and doing

technical writing. He has been awarded the Microsoft Most Valuable

Professional (MVP) award 14 years in a row.

Agus is a lecturer and researcher in the field of networking and

security systems as part of the Faculty of Computer Science at Universitas

Indonesia, Indonesia. Currently, he is pursuing a PhD in computer science

at the Freie Universität Berlin, Germany. He can be reached on Twitter at

@agusk2010.

Wely Lau is a developer, architect, trainer, consultant, technical writer, and

technology lover. 

With the grant of the ASEAN Graduate Scholarship, Wely obtained

his MS in information systems from Nanyang Technological University.

He currently works as a cloud solution architect on the Azure application

development platform for Microsoft Asia Pacific.

In his spare time, he writes a blog, delivers presentations, and

participates in the online community. His passion in driving Microsoft

technologies, especially Azure, resulted in him being awarded the first

Windows Azure MVP in Southeast Asia.

Wely can be reached by e-mail at wely.lau@gmail.com.

xiii

About the Technical Reviewer

Mayur Tendulkar is technology solutions professional who works at

Microsoft in Singapore, helping people with technology. Previously he

was a program manager on the Xamarin team at Microsoft, working in

Pune, India. Before joining Microsoft, he was awarded the Microsoft

Most Valuable Professional for Windows development and worked

as a developer evangelist with Xamarin. He has been writing mobile

applications since the days of Windows Mobile 5.0 and loves everything

mobile and cloud these days. You can find him talking at conferences, at

user groups, and on various social channels. His coordinates are @mayur_

Tendulkar and mayur-tendulkar on Git. You can follow his thoughts on

his blog: http://mayurtendulkar.com.

http://mayurtendulkar.com/

1© Agus Kurniawan, Wely Lau 2019
A. Kurniawan and W. Lau, Practical Azure Functions,
https://doi.org/10.1007/978-1-4842-5067-9_1

CHAPTER 1

Introduction to Azure
Functions
Azure Functions is a Microsoft Azure service that provides a serverless

solution, enabling developers to address their business problems

efficiently. In this chapter, we will start by demystifying the serverless

concept. Subsequently, we will explore Azure Functions and show how to

set up the development environment. Then, we will show how to develop a

simple program with Azure Functions.

The following topics are covered:

•	 An overview of serverless computing

•	 Introduction to Azure Functions

•	 How to set up the development environment

•	 How to develop a simple program using Azure

Functions

•	 How to use the Azure portal

2

�An Overview of Serverless Computing
Serverless computing, or in short serverless, is yet another buzzword in the

computing industry that has been very popular in recent years.

There are several characteristics and benefits of serverless. First,

the term serverless doesn’t mean that there are no servers. There are

certainly servers involved; however, they are being abstracted. That means

developers do not need to worry about the server provisioning, software

patching, and scaling. It will all be taken care of by the serverless platform.

This enables developers to focus more on writing code to solve business

problems.

In addition, the code that you deploy to the serverless platform will be

executed based on a specific event. Here are some examples:

•	 You can use a timer trigger to clear a temporary table in

a database every Friday at 2 p.m.

•	 You can use a queue trigger when a new order is added

to a queue.

•	 You can use an HTTP web trigger when an HTTP-based

endpoint is being invoked by a browser or client.

Another benefit of serverless computing is the subsecond billing

model. The serverless computing options offered by the major cloud

platforms typically have competitive billing models, and you pay only for

the resources that you utilize.

Does that sound like platform as a service (PaaS) or infrastructure as a

service (IaaS)? It sort of is, but at a finer-grained level.

When you provision a PaaS or IaaS resource (such as a virtual machine

[VM]), you are billed for the duration of VM uptime or running state.

Whether the VM is 10 percent or 50 percent or 90 percent utilized, you pay

the same price, because that entire VM is technically rented to you.

Chapter 1 Introduction to Azure Functions

3

By contrast, with serverless, you will be billed only for the resource

execution time and resource consumption. That is because your code will

be run on a pool of available servers, assigned by the serverless platform.

The benefit of this is a better price point and cost efficiency.

�Introduction to Azure Functions
As mentioned, Azure Functions is an Azure service from Microsoft that

provides serverless solutions for running small pieces of code. When using

the service, you can focus on writing code to solve business problems

without worrying too much about the whole platform or infrastructure.

Therefore, it can significantly accelerate your development time. You can

read more about Microsoft Azure Functions at https://azure.microsoft.

com/en-us/services/functions/, as shown in Figure 1-1.

Figure 1-1.  Official web page for Azure Functions

Chapter 1 Introduction to Azure Functions

https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/

4

�Supported Languages
Currently, there are three officially supported languages in Azure

Functions: C#, JavaScript, and F#. However, there are other languages

that are expected to be supported in the future such as Java, Python, PHP,

and more.

You can find the list of supported programming languages at

https://docs.microsoft.com/en-us/azure/azure-functions/

supported-languages.

�Function Runtime
The Azure Functions runtime defines the fundamental way your function

will run on top of the platform. There are two versions of the Azure

Functions runtime: 1.x and 2.x. The following are the main differences

between the two:

•	 Runtime 1.x only supports development on the

Windows platform because it was built on the .NET

Framework.

•	 Runtime 2.x supports development across platforms,

including Windows, Linux, and macOS, as it was built

on top of .NET Core.

To learn more about the considerations when choosing the runtime

version as well as the migration process, visit https://docs.microsoft.

com/en-us/azure/azure-functions/functions-versions.

Chapter 1 Introduction to Azure Functions

https://docs.microsoft.com/en-us/azure/azure-functions/supported-languages
https://docs.microsoft.com/en-us/azure/azure-functions/supported-languages
https://docs.microsoft.com/en-us/azure/azure-functions/functions-versions
https://docs.microsoft.com/en-us/azure/azure-functions/functions-versions

5

�Why Azure Functions?
We’ve already discussed the general benefits of serverless computing. There

are additional competitive advantages of Azure Functions, listed here:

•	 Fully open source: Azure Functions is open source,

which enables the community to contribute their ideas

or file issues to try to improve the product. You can

find the source code of the runtime/host, samples,

command-line tools, templates, and UI here: https://

github.com/Azure/Azure-Functions.

•	 Inherits the Azure platform capabilities: As one

of the important services, Azure Functions naturally

inherits tons of capabilities from Azure. This includes

a multiregion presence around the globe, security,

compliance and certification, platform operation, and

many other aspects.

•	 Integration with other services: Azure Functions has

so many built-in integrations with services including

Azure services (such as Azure Storage, the SQL

database, Cosmos DB, etc.) and external services (such

as SendGrid e-mail services, Twilio SMS services, and

even external files).

Chapter 1 Introduction to Azure Functions

https://github.com/Azure/Azure-Functions
https://github.com/Azure/Azure-Functions

6

•	 Community and official support: From a community

support perspective, developers can easily find

documentation, sample codes, and resources on the

Internet.

•	 StackOverflow: https://stackoverflow.com/
questions/tagged/azure-functions

•	 MSDN Forum: https://social.msdn.microsoft.
com/Forums/azure/en-US/home?forum=azure

functions

•	 Raising issue in GitHub: https://github.com/
Azure/Azure-Functions/issues

Customers can raise an official commercial support ticket for

Microsoft, as discussed here: https://docs.microsoft.com/en-us/

azure/azure-supportability/how-to-create-azure-support-request.

�Setting Up the Development Environment
Though you could write and deploy your function code directly on the

Azure portal, developing and testing your functions locally provides higher

productivity and convenience.

Depending on your language and operating system preference, here

are several popular ways to develop functions with Azure Functions:

•	 Command prompt and terminal (supports C#, C#

Script, JavaScript)

•	 Visual Studio Code (supports C#, C# Script, JavaScript)

•	 Visual Studio 2019 or 2019 (supports C# only)

Figure 1-2 illustrates how you as a developer will be able to access

Azure Functions through the previously mentioned techniques.

Chapter 1 Introduction to Azure Functions

https://stackoverflow.com/questions/tagged/azure-functions
https://stackoverflow.com/questions/tagged/azure-functions
https://social.msdn.microsoft.com/Forums/azure/en-US/home?forum=azurefunctions
https://social.msdn.microsoft.com/Forums/azure/en-US/home?forum=azurefunctions
https://social.msdn.microsoft.com/Forums/azure/en-US/home?forum=azurefunctions
https://github.com/Azure/Azure-Functions/issues
https://github.com/Azure/Azure-Functions/issues
https://docs.microsoft.com/en-us/azure/azure-supportability/how-to-create-azure-support-request
https://docs.microsoft.com/en-us/azure/azure-supportability/how-to-create-azure-support-request

7

In addition, you can use Application Insights to perform application

monitoring, which will be discussed in more detail in Chapter 9.

You can find more information including how to install these packages

and tools at https://docs.microsoft.com/en-us/azure/azure-

functions/functions-develop-local.

You will learn how to develop Azure Functions programs in this

book primarily using Visual Studio 2019 with Visual C#. Microsoft

provides a project template for Azure Functions in Visual Studio 2019.

From the welcome screen, choose New Project. Type function in the

search bar, and you should see the Azure Functions project template, as

shown in Figure 1-3.

Figure 1-2.  Development environment and interaction with Azure
Functions

Chapter 1 Introduction to Azure Functions

https://docs.microsoft.com/en-us/azure/azure-functions/functions-develop-local
https://docs.microsoft.com/en-us/azure/azure-functions/functions-develop-local

8

�Building a Simple Azure Functions Program
In this section, you will build your first simple program with Azure

Functions. You also will use the existing Azure Functions template for this

demo. Then, you will call the program from a browser. To implement this

demo, you should have an active Microsoft Azure account. Microsoft also

provides a trial for Microsoft Azure, which can be found at https://azure.

microsoft.com/en-us/offers/ms-azr-0044p/.

Let’s get started!

Figure 1-3.  Project template for Azure Functions in Visual Studio 2019

Chapter 1 Introduction to Azure Functions

https://azure.microsoft.com/en-us/offers/ms-azr-0044p/
https://azure.microsoft.com/en-us/offers/ms-azr-0044p/

9

�Creating a Project
First, let’s create a project for Azure Functions using the Azure portal. You

can access it at https://portal.azure.com/. Technically, you can use any

browser to access the Azure portal. After logging on to your Azure account,

you can start creating a resource with Azure Functions. Click the “Create a

resource” item, as shown in Figure 1-4.

Select Function App, as shown in Figure 1-4. Subsequently, you will see

a Function App form, as shown in Figure 1-5. Fill in all the fields to create a

function app.

Figure 1-4.  Creating a new Azure Functions resource

Chapter 1 Introduction to Azure Functions

https://portal.azure.com/

10

�Function App

Think of a function app like a container that hosts the execution of one or

more functions. This means all the functions that you create within this

function app will inherit the same configuration such as the operating

system, hosting plan, runtime stack, and so on.

�Operating System

You can choose to run your function app on either the Windows or Linux

operating system (Linux is currently in Preview). We will choose Windows

in this example.

�Hosting Plan

The hosting plan defines how your function app will eventually run.

Choosing the Consumption Plan enables your function app to run

on the pool of shared resources among all other tenants and obviously

with the appropriate security measurements and segregation in place.

Figure 1-5.  Filling in the Functions App form

Chapter 1 Introduction to Azure Functions

11

Your function app will be scaled automatically by Azure when the load

increases or decreases. You will be billed only for the execution and

resource consumption when your code is executed. Therefore, you can

consider this option to be truly serverless.

You can also choose to deploy your function app on an existing App

Service Plan. Because you define the size of your App Service Plan (the

number of instances and the size of each instance), the resource function app

will be dedicated to you. However, you will be responsible for scaling the plan.

With this option, you will be billed based on the App Service Plan, regardless

of how many times your code executes. Another benefit of the App Service

Plan is that it enables you to access some additional features such as virtual

network (vnet) connectivity and the Always On feature, which allows you to

control a cold start. These features are not available in the Consumption Plan.

At the time of this writing, Microsoft has just introduced a new plan in

Preview mode named Premium Plan. The main objective of introducing

this option is to provide better performance (of each instance size) as

well as more predictable pricing. You can learn more about the Premium

Plan at https://docs.microsoft.com/en-us/azure/azure-functions/

functions-scale#premium-plan.

For the example in this chapter, we will choose the Consumption Plan.

�Runtime Stack

The runtime stack defines the preinstalled runtime environment that will

run your code in the language of your choice such as .NET, JavaScript, or

Java. For the example in this chapter, we will select .NET.

You can fill in all the required fields including Resource Group and

Storage.

When you’re done, click Create. You will then have an Azure portal that

shows your Azure function app. You can check whether the Azure function

app is already created. Figure 1-6 shows our function app, called spinach. You

can see that the function app creation wizard generates four Azure resources.

Chapter 1 Introduction to Azure Functions

https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale#premium-plan
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale#premium-plan

12

Next, you can create a function on the function app.

�Creating a function in a function app
To create a function, you should go to the Function Apps dashboard by

clicking your function app.

After clicking your function app, you should see the Function Apps

dashboard, as shown in Figure 1-7. There are three types of apps in your

function app: functions, proxies, and slots. As of this writing, the slots

feature is in Preview mode.

Figure 1-6.  A function app was created

Chapter 1 Introduction to Azure Functions

13

If you click Functions, you should get a list of functions that you have

created. You can see this in Figure 1-8.

Figure 1-7.  Azure Function Apps dashboard

Figure 1-8.  A list of functions in Azure Functions

Chapter 1 Introduction to Azure Functions

14

For the demo purposes, we will use a project template. Select the

“HTTP trigger” template by clicking the + icon to the right of Functions

(as shown in Figure 1-9).

You will get the form shown in Figure 1-10. Fill in all the required fields.

Select Function as the authentication level. When you’re done, click the

Create button.

Figure 1-9.  Creating a new Azure Functions project based on a
template

Chapter 1 Introduction to Azure Functions

15

After clicking the Create button, you should get the form shown in

Figure 1-11. You will see some sample code from the project template

(HTTP trigger). You can also edit this program directly in a web editor.

Figure 1-10.  Filling in a name

Chapter 1 Introduction to Azure Functions

16

Now you are ready to run the program.

�Running the Application
You can run the program by clicking the Run button. You should get the

dialog shown in Figure 1-12. Copy this URL, add &name=xxx to it, and paste

the URL into another browser tab.

Figure 1-12.  Getting a copy of the URL

Figure 1-11.  Code in the template

Chapter 1 Introduction to Azure Functions

17

If you succeed, you should get a response from the server. For instance,

we set name=agusk, so you can see our program output in Figure 1-13.

Figure 1-13.  Accessing an Azure Functions application from a browser

Try changing it to name=??, with ?? as your own name. Then, visit the

URL in a browser.

�Accessing Azure Functions in the Azure
Portal
Azure Functions provides some features and tools to manage its service.

If you open the Azure dashboard, you should see some resources

(Figure 1-14).

Chapter 1 Introduction to Azure Functions

18

If you want to open a function app, open a resource by clicking App

Services. Then, you should get the form shown in Figure 1-15. There are

two tabs on this form, Overview and “Platform features.”

The “Platform features” tab consists of configuration settings, tools,

and monitoring settings. You can configure a custom domain and manage

authentication. You also can work with some tools by following the links.

Figure 1-14.  All these resources are related to Azure Functions

Chapter 1 Introduction to Azure Functions

19

If you are familiar with Azure App Service, you will notice that its

platform features are similar. This is because Azure Functions is hosted on

the same underlying technologies as Azure App Service.

You will explore these features in the upcoming chapters, getting

details and working through various scenarios.

�Comparing Azure Functions to Logic Apps
While the main topic of this book is Azure Functions, it’s worthwhile to

mention another serverless offering named Logic Apps. You can think

of Azure Functions as a serverless code platform, while Logic Apps is a

serverless workflow-based platform suitable for integration scenarios.

There is very little (in fact almost none) code required while authoring a

Logic Apps solution. Logic Apps comes with a visual designer, which can

be accessed from the Azure portal, as shown in Figure 1-16, or a tool such

as Visual Studio.

Figure 1-15.  Several features and tools for a function app

Chapter 1 Introduction to Azure Functions

20

Table 1-1 compares Azure Functions to Logic Apps.

Figure 1-16.  Visual designer of Logic Apps

Table 1-1.  Comparison of Azure Functions and Logic Apps

Azure Functions Logic Apps

Authoring

style

Code-based with multiple

languages

Workflow-based visual designer

Connectors Minimum; supports mostly Azure

services in triggers and bindings;

some external connectors for

output bindings

More than 200 connectors

from Azure-based to Microsoft

ecosystems to third parties and

more

Deployment

model

Can be deployed as the

Consumption Plan or a dedicated

plan in an app service environment

Can be deployed as the

Consumption Plan or a

dedicated plan in an integrated

service environment

Runtime Open source and can be deployed

locally or also available in Azure

Available only in the Azure cloud

Chapter 1 Introduction to Azure Functions

21

Note that you can invoke Azure Functions programs from the Logic

Apps designer, as shown in Figure 1-17.

�Summary
In this chapter, we started with the concept of serverless computing. You

then learned what Azure Functions is. You also developed a simple Azure

Functions program from a template. We subsequently compared Azure

Functions to Logic Apps.

In the next chapter, you will focus on Azure Functions programming

with some scenarios.

Figure 1-17.  Integrating Azure Functions with Logic Apps

Chapter 1 Introduction to Azure Functions

23© Agus Kurniawan, Wely Lau 2019
A. Kurniawan and W. Lau, Practical Azure Functions,
https://doi.org/10.1007/978-1-4842-5067-9_2

CHAPTER 2

Azure Functions
Programming
This chapter discusses the programming model of Azure Functions and

enables you to increase your development productivity.

�Exploring the Azure Functions
Programming Model
While Azure Functions provides some serverless benefits, one of its unique

features is its programming model, which simplifies the way developers

write code through bindings.

Integration with other services (regardless of whether they’re within

Azure or external to it) is common and critically important. As such,

triggers and bindings allow developers to access other services more

efficiently while writing less code.

�Triggers
As you can tell from the name, a trigger defines how a function will be

executed based on a specific event. The trigger could be an HTTP request,

a timer that is set to run every five minutes, or even a new message that is

enqueued.

You can have only one trigger per function.

24

�Input Bindings
In the event that your code needs to process or access supplementary data

from other services, input can really simplify the way you code.

Take the example of reading a blob text file from an Azure Blob

Storage account. Traditionally, you would need to use the Azure

Blob Storage SDK or the REST API (depending on your choice

of programming languages). This can take 12 to 20 lines of code,

including the instantiation of CloudStorageAccount, CloudBlobClient,

CloudBlobContainer, and so on.

An input binding can achieve this much more easily in just five lines in

the binding config file.

You can have more than one input binding in a function.

�Output Bindings
As you can tell from the name, an output defines how you want to produce

the result that you’ve written in your code.

You can have more than one output binding in a function.

Figure 2-1 and Figure 2-2 illustrate how triggers and bindings are

defined in both configuration files (function.json) and the actual

function code (run.csx).

Chapter 2 Azure Functions Programming

25

Figure 2-1.  An example of a function configuration file (function.json)

Figure 2-2.  An example of an actual function (run.csx)

Chapter 2 Azure Functions Programming

26

You can define triggers and bindings in several ways in the Azure

Functions programming model. The previous sample uses C# Script

(.csx). Obviously, the code will differ when you use C#, JavaScript, or

another programming language. For more details, you can see other

variations here: https://docs.microsoft.com/en-us/azure/azure-

functions/functions-triggers-bindings#example-trigger-and-

binding.

�Creating Functions from a Template or
the Quickstart
In this section, you will explore how to create a function from a template

and the quickstart process.

�Creating Functions from a Template
As you learned in Chapter 1, when you click the + icon to add a function,

you will see the list of function templates based on language and scenario,

as shown in Figure 2-3.

Chapter 2 Azure Functions Programming

https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings#example-trigger-and-binding
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings#example-trigger-and-binding
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings#example-trigger-and-binding

27

These templates allow developers to create functions by filtering

the languages (C#, F#, JavaScript, and so on) or scenarios (Core, API &

Webhooks, IoT Hub, etc.). You can also choose to enable the experimental

language support for more language options.

�Creating Functions from the Quickstart
As you can see, with more than 60 templates, there are many combinations

that you can choose from. You can also choose from the quickstart menu

for a simpler view by clicking the “go to the quickstart” link. This will

enable you to choose only two steps (the scenario and then the language),

as shown in Figure 2-4.

Figure 2-3.  List of templates

Chapter 2 Azure Functions Programming

28

�Using Webhook + API
Let’s explore Webhook + API, as this is one of the most popular options

when using Azure Functions. This option simply generates an HTTP

endpoint, and your code will be executed when the endpoint URL is

invoked.

As shown in Figure 2-4, choose Webhook + API from the scenario

options, then select CSharp from the language options, and finally click the

“Create this function” button.

You will notice that the function with the default name HttpTrigger1

(along with several files) will be created (see Figure 2-5). This is similar to

what you saw in Figure 2-2.

Figure 2-4.  Creating functions from the quickstart menu

Chapter 2 Azure Functions Programming

29

•	 The left menu displays a list of resources (including

functions) within your function app.

•	 The right menu shows files for each function.

function.json is the function’s configuration file,

while run.csx is your actual function code.

•	 The editor in the center displays sample code for

your function. Notice that the editor will load the file

according to your selection on the right.

�Integrate Menu
Let’s explore the Integrate menu, which is right below your function name,

in the left menu. The upper section allows you to define the triggers,

inputs, and outputs of the function. Figure 2-6 shows how the associated

information is displayed.

Figure 2-5.  Azure Functions template created with Webhook + API

Chapter 2 Azure Functions Programming

30

Because you chose Webhook + API in the quickstart menu, the Azure

portal automatically populates the HTTP trigger for you. You can modify

the HTTP trigger accordingly as follows:

•	 Choosing all or selected HTTP methods (GET, POST,

DELETE, and so on)

•	 Defining a route template

•	 Defining a request parameter (default name required)

•	 Setting the authorization level, which includes the

following:

•	 Anonymous: Anybody can invoke this function

without having to present any key.

•	 Function: You can invoke this function by

presenting the key at the function level, which

means each function will have its own key.

•	 Admin: You can invoke this function only with an

admin (master) key.

Figure 2-6.  Integrate menu in an HTTP trigger

Chapter 2 Azure Functions Programming

31

Click + New Input in the upper part, and you will see several input

binding options. Choose Azure Blob Storage and click Select (see Figure 2-7).

Figure 2-7.  Choosing Azure Blob Storage as the input binding

If you encounter a warning regarding the Azure Blob Storage input

extension not being installed, simply click Install. After a few moments,

you should be able to use this Blob Storage input binding (Figure 2-8).

Figure 2-8.  Blob Storage input binding details

Chapter 2 Azure Functions Programming

32

You can leave the storage account as it is or choose your preferred

storage account to fetch the blob from. In our case, we already prepared a

storage account, container, and blob in the form of a text file, as shown in

Figure 2-9.

Figure 2-9.  Preparing the storage account, container, and blob

The path defines the blob storage container and the blob name. In this

example, change it to incontainer/greeting2.txt.

BlobParameterName is the parameter name that will be used in your

function code. You can just leave it set to inputBlob. You can click Save

after that. Next, let’s explore the outputs.

As you can see in Figure 2-10, the Webhook + API template provides

HTTP($return) under Outputs, which you can click to find out more

details. You can also click + New Output since the output binding allows

you to have more than one output.

Chapter 2 Azure Functions Programming

33

The changes you perform in the user interface (including for

triggers, inputs, and outputs) are reflected in the function.json

configuration file. You can view this file through the “Advanced editor”

link at the top-right corner, or you can navigate to the function.json

file, as shown in Figure 2-5.

Before running and testing the function, make sure to update your

code in the run.csx file, as shown in Figure 2-2. As you can guess, this

example will display the greeting you specified in your blob storage

account. However, if there isn’t any message found in the blob, it will

display the default greeting “Hello.”

Figure 2-10.  Output bindings

Chapter 2 Azure Functions Programming

34

�Manage Menu
Let’s take a step back and further explore the Manage menu for your

HttpTrigger1 function by clicking Manage (Figure 2-11). This menu lets

you do the following:

•	 Enable and disable the function state

•	 Delete the function

•	 Manage the keys of function (including the function-

level keys as well as the host- or master-level keys)

Figure 2-11.  Manage menu on each function

�Use Cases of Webhook + API
There many use cases that you can develop with this template, such as the

following:

•	 Developing an HTTP API endpoint to listen for a

webhook callback

•	 Serving as a middle-layer HTTP API for a web front end

such as Angular

•	 Serving as a middle-layer HTTP API for a mobile

application

Chapter 2 Azure Functions Programming

35

We will discuss these use cases in more detail in the upcoming chapters.

�Setting Up a Timer-Based Function
The timer-based function is another popular template. The idea is to execute

a function on a specific scheduled defined as a CRON expression. Azure

Functions makes use of the NCrontab library for the CRON interpretation.

�Using a CRON Expression in NCrontab
A CRON expression is a simple yet powerful way to specify a recurring

time in a string containing five or six characters separated with spaces.

You can learn more about the CRON expression in the examples shown at

https://github.com/atifaziz/NCrontab.

Figure 2-12 explains the CRON format for NCrontab.

Figure 2-12.  CRON format in timer-based Azure Functions

Table 2-1 shows several examples of CRON expressions.

Table 2-1.  Example CRON Expressions

Number CRON Expression Meaning

1 */10 * * * * * Run every ten seconds

2 0 0 10 * * * Run at 10 every day

3 0 15 11 * * 1 Run at 11:15 every Monday

4 0 */5 22-23 * * 1-5 Run every five minutes between 10 p.m. and

11 p.m. only on weekdays

Chapter 2 Azure Functions Programming

https://github.com/atifaziz/NCrontab

36

Notice that you can set the schedule with a simple or a complicated

expression.

�Creating a Timer-Based Function
Now that you understand how CRON expressions work, let’s start creating

a timer-based function. To do that, you can use either the quickstart or the

template option, as discussed earlier in this chapter.

Figure 2-13 shows how to create a timer trigger function by using the

template option.

Figure 2-13.  Creating a timer-based function

Give the function a name and define the schedule based on a CRON

expression, which you learned about earlier. As you can tell, the template

autogenerates 0 */5 * * * * in the Schedule box, which means run the

function every five minutes. Change the expression to */10 * * * * * to run

this function every ten seconds.

Click Create; then the code editor screen will be shown. Expand the

bottom section to display the log (see Figure 2-14).

Chapter 2 Azure Functions Programming

37

The provided sample code just performs logging with a description

of “C# Timer trigger function executed on TIME,” on the schedule you

defined earlier, which is every ten seconds.

�Exploring Use Cases for Timer-Based Functions
Timer-based functions are useful for use cases such as the following:

•	 Clearing temporary or log tables on a certain frequency

•	 Performing calculations or processing information

from a master table and outputting to a calculated or

summary table

•	 Sending a report e-mail at the end of every month

Figure 2-14.  Logs in timer-based trigger function

Chapter 2 Azure Functions Programming

38

�Messaging with the Azure Service Bus
Queue Trigger Template
The asynchronous architecture of Azure Functions enables developers to

create more robust solutions without having to be online all the time. As a

matter of fact, in today world, many factors such as network and hardware

are considered unreliable.

Therefore, you should design resilient solutions that can self-recover

when an unexpected event occurs. Messaging and queuing systems play

an important part in this architecture.

Azure Functions provides several varieties of this template including

the following:

•	 Azure Queue Storage Trigger

•	 Azure Service Bus Queue Trigger

•	 Azure Service Bus Topic Trigger

•	 Azure Blob Storage Trigger

•	 Azure Event Hub Trigger

•	 Azure Cosmos DB Trigger

Although each of these templates uses different Azure services, the

concept of a trigger is similar in each template: when an item (which could

be a message, a blob, or a record) appears, trigger the function.

In this section, you’ll learn how to use the Azure Service Bus queue

with Azure Functions. Azure Service Bus offers reliable cloud-based

messaging as a service. The two main capabilities are queues (for FIFO

message delivery from a producer to one or more competing consumers)

and topics/subscriptions (for the publish/subscribe model).

Chapter 2 Azure Functions Programming

39

Let’s learn more about how to integrate the Azure Service Bus queue

with Azure Functions. Take the following scenario as an example:

•	 A new sales order is added into a queue.

•	 The new sales order will be processed by the Azure

Functions function.

•	 A notification e-mail will be sent once the sales order is

processed.

�Creating an Azure Service Bus
First, you’ll need to create a service bus namespace, which is a scoping

container for Azure’s messaging component.

To do that, click the “+ Create a resource” button in the left menu of the

Azure portal (https://portal.azure.com); then type Service Bus, click

Create, and fill in the details, as shown in Figure 2-15.

Figure 2-15.  Creating an Azure Service Bus namespace

Chapter 2 Azure Functions Programming

https://portal.azure.com

40

Once the Azure Service Bus namespace is created, you’ll need to create

a queue. To do that, click + Queue and fill in the queue name and details

(Figure 2-16). In our example, the Azure Service Bus namespace is called

practicalazurefunctionssb, and we named the queue order. You can

leave the other fields (such as “Max queue size,” etc.) at their defaults.

Figure 2-16.  Creating an Azure Service Bus queue

The next step is for you to send a message to the order queue. To do

that, you can do either of the following:

•	 Use the Azure Service Bus Explorer tools: https://

github.com/paolosalvatori/ServiceBusExplorer/

releases.

•	 Use the Service Bus SDK. This example shows a .NET

SDK: https://docs.microsoft.com/en-us/azure/

service-bus-messaging/service-bus-dotnet-get-

started-with-queues#send-messages-to-the-queue.

Chapter 2 Azure Functions Programming

https://github.com/paolosalvatori/ServiceBusExplorer/releases
https://github.com/paolosalvatori/ServiceBusExplorer/releases
https://github.com/paolosalvatori/ServiceBusExplorer/releases
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-get-started-with-queues#send-messages-to-the-queue
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-get-started-with-queues#send-messages-to-the-queue
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-get-started-with-queues#send-messages-to-the-queue

41

Figure 2-17 shows how to use the Service Bus Explorer tool to enqueue

the message “10 unit of Surface Laptop.”

Figure 2-17.  Service Bus Explorer tool

�Creating an Azure Functions Function
with a Service Bus Queue Trigger
Click the + button and choose “Azure Service Bus Queue trigger” for the

template (Figure 2-18). If you get a warning message indicating that the

extension isn’t installed, just click Install and wait for a few moments.

Chapter 2 Azure Functions Programming

42

Subsequently, you will need to fill in the details for the Azure Service

Bus details (Figure 2-19). Follow these steps:

	 1.	 Name your function. As you can see, the default

name is ServiceBusQueueTrigger1.

	 2.	 It’s important to determine which Azure Service Bus

account to use. As such, click New and browse to the

Azure Service Bus namespace you created earlier;

then click Select. In the event your service bus is in

a different Azure subscription, you should choose

Custom.

	 3.	 For the queue name, make sure you enter the queue

name you created earlier. In this case, ours is called

order. Then click Create.

Figure 2-18.  Creating an Azure Service Bus queue trigger function

Chapter 2 Azure Functions Programming

43

After a few moments, you will see that the function is successfully

created, and you will be routed to the code editor page with run.csx open.

Expand the bottom log section and take a closer look at the log message, as

shown in Figure 2-20.

Figure 2-19.  Filling in the details of the Azure Service Bus queue
trigger function

Figure 2-20.  Logs in the Azure Service Bus queue trigger function

Chapter 2 Azure Functions Programming

44

�Preparing SendGrid
SendGrid is a popular e-mail service provider. To register for a free trial

account, go to https://sendgrid.com/free/.

Once you have a SendGrid account, create an API key (Figure 2-21),

making note of it and securing it properly as you may not want to view it

again for security reasons.

Figure 2-21.  Creating API keys in SendGrid

�Adding an E-mail Address as an Output Binding
Navigate to the Integrate menu under your Azure Service Bus queue

trigger function, click + New Output, and select SendGrid. Select the

“Use function return value” check box and fill in e-mail addresses in the

“from address” and “to address” boxes (Figure 2-22). In the SendGrid

API Key App Setting field, click New and fill in the API key with the value

you copied in the previous section. You can leave “Message subject” and

Message Text empty as you will fill them in programmatically later in your

function code. Click Save to accept the changes.

Chapter 2 Azure Functions Programming

https://sendgrid.com/free/

45

�Updating the Azure Function Code
Navigate to your function code editor by clicking your function name; in

our case, this is ServiceBusQueueTrigger1. Replace the current code with

the code snippet in Listing 2-1 and click Save.

Listing 2-1.  Sending E-mail with SendGrid When a Message Is

Enqueued

#r "SendGrid"

using System;

using System.Threading.Tasks;

using SendGrid.Helpers.Mail;

using Microsoft.Azure.WebJobs.Host;

Figure 2-22.  SendGrid output binding

Chapter 2 Azure Functions Programming

46

public static SendGridMessage Run(string myQueueItem, ILogger log)

{

 SendGridMessage message = new SendGridMessage()

 {

 Subject = "Order received on " + DateTime.Now.ToString()

 };

 �message.AddContent("text/plain", $"Hi there, we've received

your order. We'll let you know agian when your order is on

its way. Order: {myQueueItem}");

 return message;

}

You started by importing SendGrid as an external library since it’s

not part of the standard .NET/C# library. Subsequently, you will have

four using directives including SendGrid.Helpers.Mail, as you’ll be

using some of the class in your code. In the Run method, you then create

a SendGridMessage class and fill in the subject and message accordingly,

before returning the SendGrid’s message as a return value.

�Testing the Service Bus Queue Trigger Function
Since this is an Azure Service Bus queue trigger function, you’ll need to

enqueue a message in the Azure Service Bus queue. As discussed, you

can use either the Service Bus Explorer or the SDK to enqueue a message.

Figure 2-23 shows how we enqueued a message containing “4 Unit of

Surface Book 2” with the Service Bus Explorer.

Chapter 2 Azure Functions Programming

47

Before hitting the Start button, navigate back to your Azure portal,

particularly the function code editor that is displaying run.csx. Expand the

Log section at the bottom.

Go back to your Service Bus Explorer and hit the Start button to start

the enqueue. Immediately, navigate back to your Azure portal and notice

the log. If everything works well, you should see the logs, as shown in

Figure 2-24.

Figure 2-23.  Sending a message in the Service Bus Explorer

Chapter 2 Azure Functions Programming

48

At the same time, you may receive an e-mail notification at the e-mail

address you defined earlier, indicating that your order is being processed

(see Figure 2-25).

Figure 2-24.  Testing the queue trigger function

Figure 2-25.  E-mail sent from SendGrid output trigger

Chapter 2 Azure Functions Programming

49

�Summary
In this chapter, you started by learning about the core Azure Functions

programming model, and then you learned how to create a function

from the quickstart or a template. You then moved on to several popular

scenarios of Azure Functions including Webhook + API, timer-based

functions, and finally the queue trigger functions.

Chapter 2 Azure Functions Programming

51© Agus Kurniawan, Wely Lau 2019
A. Kurniawan and W. Lau, Practical Azure Functions,
https://doi.org/10.1007/978-1-4842-5067-9_3

CHAPTER 3

Accessing Data from
Azure Functions
In the previous chapter, you learned about the programming model used

in Azure Functions and saw a few popular templates. While most of the

examples were done with C# Script directly in the Azure portal, in this

chapter you will dive deeper into how to access Azure SQL Database in

Azure Functions through Visual Studio 2019.

�Overview of Azure SQL Database
Azure SQL Database (aka SQL Azure) is a platform-as-a-service (PaaS)

relational database offered by Azure. The core engine of Azure SQL

Database is based on SQL Server. The unique feature of the SQL database

is that it is self-managed. In other words, the platform takes care of many

tasks such as provisioning the server, installing the SQL Server software,

setting up for high availability, and so much more. This allows developers

to focus on building applications and allows database administrators

(DBAs) to focus on tuning queries.

In 2018, Azure also released three similar managed databases, namely,

Azure Database for MySQL, Azure Database for PostgreSQL, and Azure

Database for MariaDB.

52

�Using Visual Studio 2019
Let’s start by opening Visual Studio 2019. We encourage you to upgrade to

the latest version if you haven’t. You can do this by clicking the notification

(flag) icon at the top right of Visual Studio 2019.

To start, select File ➤ New Project. Enter function in the search bar,

and you will see the Azure Functions project template. Click Next and fill

in the project name, location, and solution name, as shown in Figure 3-1.

Click Create to proceed.

Figure 3-1.  Azure Functions template in Visual Studio

Chapter 3 Accessing Data from Azure Functions

53

You will notice that Visual Studio generates some template code for

getting started (Figure 3-3). Click Run or press F5 to run it.

You’ll then be asked for the function version (use version 1 with the

.NET Framework or version 2 with .NET Standard/.NET Core). Let’s

choose Azure Function v2 and select “Http trigger,” as shown in Figure 3-2.

You can leave the options of Storage Account and “Access rights” at their

default values. Click OK.

Figure 3-2.  Http trigger in Visual Studio function template

Chapter 3 Accessing Data from Azure Functions

54

You will notice that another console window shows up with some logs

generated. Pay attention to the localhost URL, as highlighted in Figure 3-4.

Figure 3-3.  Visual Studio–autogenerated code in Azure Functions

Chapter 3 Accessing Data from Azure Functions

55

Paste the URL into a browser and append ?name=Azure at the end of

the URL. If everything goes well, you should see “Hello, Azure” displayed

in the browser.

As you can tell from the URL, your Azure Functions function now runs

locally.

The following are the two main advantages of developing this locally

over developing it directly on the cloud (through the Azure portal):

•	 With a powerful integrated development environment

(IDE) like Visual Studio (or an editor like Visual Studio

Code), the experience of authoring, testing, and

debugging code is more convenient.

•	 When you work in an environment that does not have

Internet access, you can continue writing your code

and deploy it later when you have Internet access.

Figure 3-4.  Running an Azure Functions function locally

Chapter 3 Accessing Data from Azure Functions

56

Coming back to the main topic of dealing with relational data in the

SQL database, what you are going to do next is record every single HTTP

request detail (such as message, client IP address, timestamp) to a SQL

database table.

�Creating Your SQL Database
Using Figure 3-5, create a SQL database on the Azure portal (https://

portal.azure.com) by clicking the “+ Create a resource” button in the left

menu; then choose Databases and SQL Database. Choose the appropriate

subscription and resource group. Provide the database name as well. For

the server, click “Create new” if you don’t have an existing server.

Figure 3-5.  Creating a SQL database

The “New server” blade will appear (as shown in Figure 3-6). Fill in

the details such as the server name, admin login, password, and location

accordingly. Make sure you remember the username and password as

you’ll be using them in later steps.

Chapter 3 Accessing Data from Azure Functions

https://portal.azure.com
https://portal.azure.com

57

The server in this context represents a virtual server, which you will

connect to from your client app. You can also control the firewall to

determine which IP addresses can connect to the server.

Coming back to the main “Create SQL Database” blade, you will see

the “Elastic pool” option. An elastic pool in Azure SQL Database allows the

user to create multiple databases while sharing a set number of resources

at a set price. As you’re not going to use this now, simply leave the “Elastic

pool” option set to No, as shown in Figure 3-7.

Figure 3-6.  Creating the Azure SQL Database server

Chapter 3 Accessing Data from Azure Functions

58

For the “Compute + storage” option, choose “Configure database.”

Notice that another blade opens showing the details of the database

configuration and size for various types of workloads such as Basic,

Standard, and Premium. Each of the database’s sizes is powered by a

machine with a different set of configurations (vCPU, RAM, and IOPS).

See Figure 3-8.

Figure 3-7.  Creating a SQL database

Chapter 3 Accessing Data from Azure Functions

59

Since this function is for demo purposes only, let’s pick the most

economical option by selecting Basic. You can increase the minimum

database size from 100MB to 250GB. Click Apply. See Figure 3-9.

Figure 3-8.  Choosing the Azure SQL Database size

Chapter 3 Accessing Data from Azure Functions

60

Go back to the “Create SQL Database” blade again and click Review

+ Create and then Create to complete the creation process. It will take

several minutes to create the database.

Once the database has been created, you will be able to explore and

perform further configuration later.

�Configuring a Firewall for a SQL Database
Server
Another thing you need to do is to configure the firewall to allow access to

a particular client IP address. The Client IP Firewall is a built-in feature in

Azure SQL Database to enhance security, in addition to providing access

with the username and password. Think about the scenario where your

username and password are lost accidentally. With this feature, you still

can restrict which IP address(es) can access your database.

Figure 3-9.  Choosing the basic size

Chapter 3 Accessing Data from Azure Functions

61

To do that (as shown in Figure 3-10), click the server name of the Azure

SQL server; then scroll in the left menu and click “Firewalls and virtual

networks.” Click the “+ Add client IP” option, and you’ll notice that the rule

name and the client IPs (starting and ending) will automatically be filled

in. You can put the same value in the START IP and END IP fields, or you

can enter a range.

Figure 3-10.  Adding a client IP in the SQL Server firewall settings

�Connecting Azure SQL Database with SQL
Server Management Studio
Since Azure SQL Database is a managed PaaS version of SQL Server, you

can use the same tool that you use for the on-premise SQL Server, namely,

SQL Server Management Studio.

Chapter 3 Accessing Data from Azure Functions

62

You can download and install SQL Management Studio (SSMS) from

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-

management-studio-ssms?view=sql-server-2017. Currently, SSMS 17.9.1

is the latest General Availability (GA) version.

Before accessing Azure SQL Database from SSMS, you will need to take

note of the connection string of Azure SQL Database in the Azure portal.

To do that, click the “Connection strings” menu in the SQL Database blade,

as shown as Figure 3-11. Depending on the type of your client app, you

can choose ADO.NET, JDBC, ODBC, etc., accordingly. Notice that your

username and password are not displayed because of security reasons.

Figure 3-11.  Getting Azure SQL Database’s connection string

Upon the installation, click File ➤ Connect to object explorer.

	 1.	 Leave the “Server type” option set to Database Engine.

	 2.	 Enter the server name you created earlier (or you can

get it from the connection string in Figure 3-12). The

server name should end with the suffix .database.

windows.net.

	 3.	 Choose SQL Server Authentication for the

Authentication option.

	 4.	 Enter the login and password that you defined earlier.

Chapter 3 Accessing Data from Azure Functions

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
http://database.windows.net
http://database.windows.net

63

The next step is to implicitly choose the database to which you want to

connect. To do that, click the Options >> button and fill in the “Connect to

database” field with the database name you defined earlier. Finally, click

Connect. See Figure 3-13.

Figure 3-12.  Connecting to Azure SQL Database from SQL Server
Management Studio

Chapter 3 Accessing Data from Azure Functions

64

If all the details are filled in correctly, you should be able to see the SQL

database displayed in the Object Explorer, as shown in Figure 3-14.

Figure 3-13.  Connection Properties tab

Chapter 3 Accessing Data from Azure Functions

65

If you encounter an error message indicating that your client IP

address doesn’t have access to the server, as shown in Figure 3-15, please

revisit the “section 3.5” to configure the firewall correctly. Alternatively,

you can click Sign In and add the firewall directly from SQL Server

Management Studio.

Figure 3-14.  Azure SQL Database and its objects in the Object Explorer

Figure 3-15.  Adding a firewall rule from SQL Server Management
Studio

Chapter 3 Accessing Data from Azure Functions

66

As you’re planning to store every single request on the Azure function

in a SQL database, you’ll learn how to create a table now. To do that,

expand the database you created earlier, right-click Tables, and choose

New ➤ Table. See Figure 3-16.

Figure 3-16.  Creating a table from Management Studio

Define the table column with the details provided in Table 3-1.

Chapter 3 Accessing Data from Azure Functions

67

Save the table with a name of FunctionRequest.

You can also refer to the SQL Data Definition Language (DDL), as

shown in Listing 3-1, if you prefer to create a table from script.

Listing 3-1.  Data Definition Language to Create the

FunctionRequest Table

CREATE TABLE [dbo].[FunctionRequest](

 [Id] [int] IDENTITY(1,1) NOT NULL,

 [ServerHost] [nvarchar](50) NOT NULL,

 [ClientIPAddress] [nvarchar](50) NOT NULL,

 [Message] [nvarchar](50) NOT NULL,

 [DateTime] [datetime] NOT NULL,

 CONSTRAINT [PK_FunctionRequest] PRIMARY KEY CLUSTERED

(

Table 3-1.  Function Request Table

Column Name Data Type Allow Nulls Remarks

Id Int No Set as the primary key. Set

Identity specification to Yes

(auto-increment). Leave Identity

Increment and Seed set to 1.

ServerHost Nvarchar(50) No This is to record the function’s

server host.

ClientIPAddress Nvarchar(50) No This is to capture the client’s IP

address.

Message Nvarchar(50) No The message produced upon

entering the name parameter in the

querystring.

DateTime Datetime No

Chapter 3 Accessing Data from Azure Functions

68

 [Id] ASC

)WITH (STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF) ON

[PRIMARY]

) ON [PRIMARY]

GO

�Configuring Azure Functions
in Visual Studio
In this section, you’ll let Azure Function’s code interact with the SQL

database you created earlier.

Accessing the SQL database from Azure Functions is similar to when

using other project types such as ASP.NET Web/MVC, .NET Console, or

even a Windows Forms app.

Make sure you provide the right connection string in the local settings,

which eventually will be mapped to the application settings in the function

app. To do that, let’s go back to Visual Studio by right-clicking your project

and clicking Publish. Then, click Edit Azure App Service Settings. As shown

in Figure 3-17, once the Application Settings pop-up window appears, click

+ Add Setting and give the new app a name such as sqldb_connection;

then click OK. Notice that there are two values (Local and Remote). This

allows you to connect to a different database depending on where it’s

running. For example, it connects to the on-premise SQL Server as a local

one, while it connects to Azure SQL Database instance when it’s deployed

to the cloud (remote).

Chapter 3 Accessing Data from Azure Functions

69

In this case, you can paste in the value for both Local and Remote

from the Connection String menu (see the section 3.5). Make sure you’ve

updated the username and password accordingly. Then click OK. The local

value will be stored in the local.settings.json file, while the remote

value will eventually be stored as an application setting in the function app.

Since you are using C# with .NET Core, you need to add the necessary

libraries to access the SQL database, particularly in the System.Data.

SqlClient assembly. To do that, right-click the project and then choose

Manage NuGet Packages, as shown in Figure 3-18.

Figure 3-17.  Application Settings pop-up in Visual Studio

Chapter 3 Accessing Data from Azure Functions

70

Click the Browse menu, enter System.Data.SqlClient, and choose

the correct one, as shown in Figure 3-19. Change the version to the latest

stable version and click Install.

Figure 3-18.  Adding NuGet packages to the project

Figure 3-19.  Adding the SQLClient library from NuGet

Click OK to preview the changes. Then click I Accept to accept the

license. You can verify whether the package was successfully installed by

clicking Dependencies ➤ Nuget under the project.

Chapter 3 Accessing Data from Azure Functions

71

�Writing Azure Functions Code in VS
You have done the necessary configuration on your Visual Studio project.

The next step is to start coding.

You’ll start by creating a class that represents the FunctionRequest table

in the SQL database. To do that, right-click the project and choose Add ➤

New Item. Make sure that you’ve selected Visual C# in the left menu, choose

Class, and then name the class FunctionRequest.cs. See Figure 3-20.

Figure 3-20.  Adding a new item in Visual Studio

Add properties to the class, as shown in Listing 3-2.

Chapter 3 Accessing Data from Azure Functions

72

Listing 3-2.  Class for FunctionRequest

using System;

namespace PracticalAzureFunctionsCh3

{

 public class FunctionRequest

 {

 public int Id { get; set; }

 public string ServerHost { get; set; }

 public string ClientIPAddress { get; set; }

 public string Message { get; set; }

 public DateTime { get; set; }

 }

}

The next step is to update the function’s code. By default, a function

called Function1 was created when you created a function project in

Visual Studio. Modify the code to what is shown in Listing 3-3.

Listing 3-3.  Function’s Main Code to Save to the Database

using System;

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;

using Microsoft.AspNetCore.Http;

using Microsoft.Extensions.Logging;

using Newtonsoft.Json;

using System.Data.SqlClient;

Chapter 3 Accessing Data from Azure Functions

73

namespace PracticalAzureFunctionsCh3

{

 public static class Function1

 {

 [FunctionName("Function1")]

 public static async Task<IActionResult> Run(

 �[HttpTrigger(AuthorizationLevel.Function, "get",

"post", Route = null)] HttpRequest req, ILogger log)

 {

 �log.LogInformation("C# HTTP trigger function

processed a request.");

 string name = req.Query["name"];

 �string requestBody = await new StreamReader(req.

Body).ReadToEndAsync();

 �dynamic data = JsonConvert.DeserializeObject(reques

tBody);

 name = name ?? data?.name;

 FunctionRequest fr = new FunctionRequest();

 fr.ServerHost = req.Host.ToString();

 �fr.ClientIPAddress = req.Headers["X-Forwarded-

For"].ToString();

 fr.DateTime = DateTime.Now;

 fr.Message = "Hello " + name;

 if (name != null)

 {

 �var str = Environment.

GetEnvironmentVariable("sqldb_connection");

 try

 {

Chapter 3 Accessing Data from Azure Functions

74

 �using (SqlConnection conn = new

SqlConnection(str))

 {

 conn.Open();

 �var text = "INSERT INTO FunctionRequest

(ClientIPAddress, ServerHost, Message,

DateTime) VALUES (@clientipaddress,

@serverhost, @message, @datetime)";

 �using (SqlCommand cmd = new

SqlCommand(text, conn))

 {

 �cmd.Parameters.AddWithValue

("@clientipaddress",

fr.ClientIPAddress);

 �cmd.Parameters.AddWithValue

("@serverhost", fr.ServerHost);

 �cmd.Parameters.AddWithValue

("@message", fr.Message);

 �cmd.Parameters.AddWithValue

("@datetime", fr.DateTime);

 �var rows = await cmd.

ExecuteNonQueryAsync();

 }

 }

 �return (ActionResult)new

OkObjectResult($"Message: \"{fr.Message}\"

from Your IP Address: {fr.ClientIPAddress}

has been recorded on {fr.DateTime.

ToString()}");

 }

Chapter 3 Accessing Data from Azure Functions

75

 catch (Exception ex)

 {

 �return new BadRequestObjectResult("Some

error occurs. Message : " + ex.Message);

 }

 }

 else

 {

 �return new BadRequestObjectResult("Please pass

a name on the query string or in the request

body");

 }

 }

 }

}

In Listing 3-3, you first created the object fr from the FunctionRequest

class and filled it with values from the function’s HttpRequest.

Subsequently, you retrieved the database connection string through

Environment.GetEnvironmentVariable("sqldb_connection") and

inserted the values into the database table. Finally, you displayed the

message as a return value to the UI.

�Running and Testing Azure Function Locally
You will build and run the Azure Functions function locally first before

deploying it to the cloud. To do that, click Debug ➤ Start Debugging or

simply press F5. Similar to what was covered earlier, now you’ll copy the

URL into the browser again and append ?name=LocalFunction. Then hit

Enter.

Chapter 3 Accessing Data from Azure Functions

76

Because you’re running Visual Studio, you can put a breakpoint

and debug over it. This will increase your development productivity

tremendously.

If everything goes well, you should see a message like “Message: ‘Hello

LocalFunction’ from Your IP Address: has been recorded on 2/19/2019

2:58:15 PM.” You will notice that Client IP Address is empty. This is because

HttpRequest’s Headers["X-Forwarded-For"] doesn’t apply when running

locally. Verify your database table if you can find the new record that was

just entered.

�Deploying to Azure Functions
Once you’ll all set locally, the next step is to deploy the function to the

cloud and to verify whether it works as expected. To do that, go back to

Visual Studio, right-click your project, and click Publish. You can either

choose to deploy to a newly created function app or select an existing one

(see Figure 3-21).

Figure 3-21.  Publishing to Azure Functions from Visual Studio

Chapter 3 Accessing Data from Azure Functions

77

In our case, we like to deploy to a new one; as such, choose the Create

New option and click Publish.

You will need to authenticate with your Azure credentials from Visual

Studio if you haven’t done so. As shown in Figure 3-22, the subscription

will show accordingly, and you can decide if you’d like to create this new

function app as part of an existing resource group or to create it in a new

resource group. Similarly, this applies to the hosting plan as well as the

storage account. Then click Create.

Figure 3-22.  Creating a new function app from Visual Studio

It will take a few moments to validate and deploy.

Chapter 3 Accessing Data from Azure Functions

78

You may encounter the dialog box shown in Figure 3-23. This happens

because the default version of Azure Functions in Azure Cloud is 1.0 (.NET

Framework) if you chose 2.0 (.NET Core) during the project creation in

Visual Studio. Choosing Yes will allow Visual Studio to update the version

of Azure Functions in Azure Cloud to 2.0 (.NET Core).

Figure 3-23.  Updating the Azure Functions version

�Running and Testing Function Apps
in the Cloud
Once the deployment has been successfully completed, navigate to the

Azure portal and browse your function apps.

Before running the application, let’s examine if the application

setting for the SQL database’s connection string has been successfully

stored. To do that, navigate to your function app’s Overview tab. Click the

“Application settings” link. Then scroll further down until you discover the

“Application settings” section, as shown as Figure 3-24. You can also click it

to verify whether the value has been entered correctly.

Chapter 3 Accessing Data from Azure Functions

79

Figure 3-24.  Azure Functions application settings

Let’s test if the function can be run properly. Like what you did earlier,

perform the same steps, except use the Azure Functions public URL.

If it goes well, you should see a message such as “Message: ‘Hello

Azure Functions’ from Your IP Address: 111.222.111.222:12345 has been

recorded on 2/24/2019 10:59:57 AM.” You can also verify if a new record

has been saved to your database table.

�Summary
You started this chapter by getting an overview of Azure SQL Database,

the PaaS relational database service in Azure. You then created and

configured an Azure SQL Database instance in Azure. Subsequently, you

used Visual Studio 2019 as an IDE to write the code that interacts with the

SQL database. Finally, you tested on the local machine as well as on Azure

Cloud.

You’ll learn about NoSQL and Azure Functions in the upcoming chapter.

Chapter 3 Accessing Data from Azure Functions

81© Agus Kurniawan, Wely Lau 2019
A. Kurniawan and W. Lau, Practical Azure Functions,
https://doi.org/10.1007/978-1-4842-5067-9_4

CHAPTER 4

Accessing Cosmos
DB in Azure Functions
NoSQL databases have been extremely popular in recent years. In this

chapter, you will learn how to access Cosmos DB, the primary NoSQL

database in Azure Functions.

�Introduction to NoSQL Databases and Azure
Cosmos DB
The term NoSQL refers to database systems that store data in a wider

variety of data models than relational databases such as documents, key-

value pairs, or graphs. This is a different concept than the conventional

relational database management system (RDBMS) used in the SQL Server,

Oracle, and MySQL databases that have been around for decades.

Though it’s not mandatory, NoSQL databases are often deployed in

distributed nodes across multiple partitions rather than in single-instance

deployments.

There are several major reasons why NoSQL has gotten more popular

in recent years including scalability, performance, and flexibility. Unlike

an RDBMS, which typically scales vertically (by adding hardware such as

CPU or memory) to the server, NoSQL scales horizontally across multiple

servers.

82

Azure Cosmos DB is an evolution of a document-based database

engine known as Azure Document DB. Several attributes make Azure

Cosmos DB a unique NoSQL database.

•	 Multimodel and multi-API: Azure Cosmos DB

provides different models and APIs including SQL

(core), MongoDB, Cassandra, Azure Tables, and

Gremlin (Graph). This means an application can access

a Cosmos DB just like accessing another MongoDB

database with the same connection string format, as

shown in Figure 4-1.

Figure 4-1.  Multi-API in Azure Cosmos DB

•	 Globally distributed: You can deploy the Cosmos DB

databases across the globe easily with just a few clicks

in the Azure portal, as shown in Figure 4-2, or a few

commands through the command line.

Chapter 4 Accessing Cosmos DB in Azure Functions

83

•	 Throughput, consistency, and latency SLA in
addition to an availability SLA: Most of the database

services on the market today offer an availability

SLA. However, Azure Cosmos DB provides a more

comprehensive SLA that includes provisions for

throughput, consistency, and latency. At the time

this book was written, the service offers 99.99 percent

guarantees for availability, throughput, latency, and

consistency. Refer to the latest SLA at https://azure.

microsoft.com/en-in/support/legal/sla/cosmos-db.

�Provisioning an Azure Cosmos DB Account
We’ll get right into the action by creating an Azure Cosmos DB database

in this section. To do that, go to the Azure portal, and click the “+ Create

a resource” button. Once the blade is opens, choose Databases and scroll

down to locate Azure Cosmos DB, as shown in Figure 4-3.

Figure 4-2.  Globally distributed NoSQL database

Chapter 4 Accessing Cosmos DB in Azure Functions

https://azure.microsoft.com/en-in/support/legal/sla/cosmos-db
https://azure.microsoft.com/en-in/support/legal/sla/cosmos-db

84

As an alternative, you can also type Cosmos in the Search the

Marketplace box to find Azure Cosmos DB.

Click Azure Cosmos DB, and you’ll immediately see another blade

called Create Azure Cosmos DB Account appear. Like the other resource

creation experiences, fill in the details (such as Subscription, Resource

Group, Location, and Account Name) accordingly.

One important field here is for the Cosmos DB API, as shown in

Figure 4-4. This will enable the core engine of Cosmos DB to behave like

the API you choose. For example, once you choose the MongoDB API and

have your application connect to Cosmos DB, your app will just treat that

Cosmos DB database like a typical MongoDB database. Note that once

you’ve chosen the API during creation, you won’t be able to change it.

Figure 4-3.  Locating Azure Cosmos DB in the Azure portal

Chapter 4 Accessing Cosmos DB in Azure Functions

85

In this example, let’s choose Core (SQL).

Another field that you need to look at is Geo-Redundancy. Enabling

this field will provision another database instance in the paired region

based on your selection of the (primary) Location field. As an example,

when you pick (Asia Pacific) Southeast Asia as the primary location, “ Asia

will be automatically selected as the secondary region. You can see the

paired region by clicking the “i” icon next to the Geo-Redundancy field,

as shown in Figure 4-5. Alternatively, you can check out the complete list

of Azure paired regions at https://docs.microsoft.com/en-us/azure/

best-practices-availability-paired-regions.

Figure 4-4.  Creating a Cosmos DB account

Chapter 4 Accessing Cosmos DB in Azure Functions

https://docs.microsoft.com/en-us/azure/best-practices-availability-paired-regions
https://docs.microsoft.com/en-us/azure/best-practices-availability-paired-regions

86

In this case, let’s just leave the setting as Disable since you can turn it

on later.

The next field is Multi-region Writes, which is also a powerful

capability of Cosmos DB. This capability enables you to provision multiple

databases across different regions with readable and writable access. You

can leave it as Disable in this case, as shown in Figure 4-6.

Figure 4-5.  Geo-Redundancy field in Cosmos DB settings

Figure 4-6.  Multi-region Writes option

There are two optional steps: Network and Tags. As you are not going

to use both in this example, you can go ahead and click “Review + create.”

It will take a few minutes to provision the Cosmos DB account.

Once the account has been successfully provisioned, you will be able

to access the Cosmos DB Overview page, which shows the accessible URI

address, write and read locations, and the list of collections, as shown in

Figure 4-7.

Chapter 4 Accessing Cosmos DB in Azure Functions

87

�Dealing with Databases, Containers,
and Items
You then need to create a database in this Cosmos DB account. To do

that, click Data Explorer in the left menu. We’ll show how to create a new

container along with a database in this section. To do that, click New

Container. Fill in the following details:

•	 Set the database ID to IceCreamDB. The database

basically serves as the unit of management of the

respective objects.

•	 Set the container ID to Rating. A container is analogous

to a collection (in the MongoDB API) or a table (in the

Cassandra API or Table API).

•	 Set the storage capacity to Unlimited.

Figure 4-7.  Cosmos DB Overview page

Chapter 4 Accessing Cosmos DB in Azure Functions

88

•	 Set the partition key to /ProductId. This is like the

concept of a shared key, which is used to spread the

incoming data across multiple partitions. You can learn

more about choosing the appropriate partition key at

https://docs.microsoft.com/en-us/azure/cosmos-

db/partitioning-overview#choose-partitionkey.

•	 Set Throughput to 400, which is the minimum

throughput you can define. The throughput (either at

the database or container level) will impact the price.

•	 Leave the other fields at their defaults.

As illustrated in Figure 4-8, you can click OK to proceed.

You might notice that there is a terminology difference depending on

the API that you chose during provisioning time. For more details about

the terminology, you can visit https://docs.microsoft.com/en-us/

azure/cosmos-db/databases-containers-items.

Figure 4-8.  Creating a new container in Cosmos DB

Chapter 4 Accessing Cosmos DB in Azure Functions

https://docs.microsoft.com/en-us/azure/cosmos-db/partitioning-overview#choose-partitionkey
https://docs.microsoft.com/en-us/azure/cosmos-db/partitioning-overview#choose-partitionkey
https://docs.microsoft.com/en-us/azure/cosmos-db/databases-containers-items
https://docs.microsoft.com/en-us/azure/cosmos-db/databases-containers-items

89

�Cosmos DB Trigger in Azure Functions
The next step is to create a Visual Studio project with a Cosmos DB trigger

for Azure Functions. At the time this book was written, the Cosmos DB

trigger in Azure Functions supports only the Core (SQL) API. This also

applies to bindings, which will be discussed in the following section.

In this section, we’ll show how to create an Azure Functions function

that listens to the Rating container for any new item. If the rating is lower

than 3, it will enqueue a message into the lowratings queue residing in

Azure Queue storage.

To perform this task, create a new Visual Studio project by choosing

an Azure Functions template and giving the project a name like

PracticalAzureFunctionCh4, similar to what you did in Chapter 3.

As shown in Figure 4-9, you can then choose Cosmos DB Trigger from

the trigger template list. For the storage account, change the drop-down

from Storage Emulator to Browse to select your preferred storage account.

Subsequently fill in the “Connection string setting” field with a connection

string label such as icecreamdbcs. Note that it will be the label of the

connection string; you will fill in the connection string’s actual value in the

JSON file later. Next, fill in the “Database name” and “Collection name”

fields, respectively, with the values you specified earlier in the section 4.4.

Finally, click OK to complete the project creation.

Chapter 4 Accessing Cosmos DB in Azure Functions

90

The next step is to add Microsoft.Azure.WebJobs.Extensions.

Storage through NuGet. As such, perform the same actions as you did in

the section 4.4. You can verify whether the package has been successfully

by going to the Installed tab, as shown in Figure 4-10.

Figure 4-9.  Azure Functions template fields

Figure 4-10.  Verifying the WebJobs.Extensions.Storage NuGet
package

Navigate to Function1.cs, which is generated automatically by Visual

Studio. Replace the code in the namespace scope with the code snippet

shown in Listing 4-1.

Chapter 4 Accessing Cosmos DB in Azure Functions

91

Listing 4-1.  Function’s Main Code for Cosmos DB Trigger with

Queue Return

 public static class Function1

 {

 [FunctionName("Function1")]

 [return: Queue("lowratings")]

 public static string Run([CosmosDBTrigger(

 databaseName: "IceCreamDB",

 collectionName: "Rating",

 ConnectionStringSetting = "icecreamdbcs",

 LeaseCollectionName = "leases",

 �CreateLeaseCollectionIfNotExists = true)]

IReadOnlyList<Document> input, ILogger log)

 {

 if (input != null && input.Count > 0)

 {

 �log.LogInformation("Documents modified " +

input.Count);

 �log.LogInformation("First document Id " +

input[0].Id);

 if (input[0].GetPropertyValue<int>("Rating") < 3)

 {

 string ratingAndReview = input[0].ToString();

 return ratingAndReview;

 }

 return null;

 }

 else return null;

 }

 }

Chapter 4 Accessing Cosmos DB in Azure Functions

92

As defined, the function will run when any changes are made to the

Rating container in the IceCreamDB database.

Notice that we have made several changes to the template’s code, as

listed here:

•	 We added the [return: Queue("lowratings")]

attribute to the Run() method. This tells the Azure

Functions function to return a message to the

lowratings queue.

•	 We added the CreateLeaseCollectionIfNotExists

= true attribute to the input parameter. As you can

tell from the name, this will basically create a lease

collection (or container) to the database if it doesn’t

exist. A lease collection is a special collection in

Cosmos DB that is used to track the change feed

reading progress per partition.

•	 Within the Run() method’s body, you basically try

to return a queue message consisting of [rating]

[review] if the rating is less than 3.

The last thing you need to do before running the code locally is to

navigate to the local.settings.json file. This is the file where you

map the label (also known as the key) to the actual value. The value of

AzureWebJobsStorage was filled in during the section 4.4. You now need

to add the Cosmos DB connection string. Fill in the connection string

label with icecreamdbcs (unless you used a different label). To get the

actual value of the connection string, navigate to the Azure portal, choose

Azure Cosmos DB, and click the Keys menu. Copy the value of the Primary

Connection String field, as indicated in Figure 4-11.

Chapter 4 Accessing Cosmos DB in Azure Functions

93

Then paste it as the icecreamdbcs value in the local.settings.

json file in Visual Studio. Your local.settings.json file should look like

Figure 4-12.

Figure 4-11.  Cosmos DB connection string

Figure 4-12.  local.settings.json file

Let’s run the function locally by pressing F5 in Visual Studio. If all goes

well, you should see the function host running locally in another console,

as shown in Figure 4-13.

Chapter 4 Accessing Cosmos DB in Azure Functions

94

Since the trigger of this function reacts to any changes on the Rating

container in IceCreamDB, you’ll want to put a breakpoint in the Azure

Functions function’s code if you’d like to see how it is being triggered.

To do that, navigate to the first line of the function’s code and hit F9 on

the keyboard or choose Debug ➤ Toggle Breakpoint in Visual Studio. You

should see the breakpoint with a red dot set, as illustrated in Figure 4-14.

Figure 4-13.  Azure Functions function running locally

Figure 4-14.  Toggling the breakpoint in Azure Functions code in
Visual Studio

Chapter 4 Accessing Cosmos DB in Azure Functions

95

You can now add a new item to the Rating container. To do that,

navigate back to your Azure portal, click Data Explorer, and then expand

IceCreamDB, Rating, and Items. Click New Item, as shown in Figure 4-15.

Figure 4-15.  Inserting a new item in Cosmos DB through the Data
Explorer

Subsequently, replace the JSON content with the code in Listing 4-2.

Listing 4-2.  New Item in JSON Format

 {

 "id" : "1",

 "ProductId" : "1",

 "Username" : "yourname",

 "Rating" : 2,

 "Review" : "I am disappointed with the Vanilla flavor"

 }

Chapter 4 Accessing Cosmos DB in Azure Functions

96

Click Save, and if the save is successful, you will notice that the

additional JSON elements (such as _rid, _self, _etag, etc.) have been

added automatically, as shown in Figure 4-16.

Figure 4-16.  The item has been successfully saved.

If you have done the configuration properly, Visual Studio will

immediately stop at the breakpoint you set earlier with the yellow color

background, as shown in Figure 4-17.

Figure 4-17.  Debugging in Azure Functions

You then can navigate by Step Into or Step Over or Continue just like

how you typically perform a debugging session. If you press F5 or click

Continue, the code will run and check whether the rating is less than 3.

Since the value of the rating in the JSON file shown in Listing 4-2 is 2, the

function should return the item in JSON format as a message to the Azure

Storage queue named lowratings.

Chapter 4 Accessing Cosmos DB in Azure Functions

97

You can verify this by navigating to your Storage account in the Azure

portal and then choosing the lowratings queue, as shown in Figure 4-18.

Figure 4-18.  Verifying messages in the queue storage

�Cosmos DB Bindings in Azure Functions
Conceptually, input and output bindings are similar to the Azure Storage

blob bindings discussed in Chapter 2.

In this section, we’ll show you how to follow up on the lowratings

message. Imagine the use case where customer service reaches out to a

customer to get more detailed feedback about why a given rating is low

in order to improve the product. The details of the feedback and follow-

up action will be eventually stored in another container in Cosmos DB

through Azure Functions’ Cosmos DB output bindings.

Start by creating another container named FeedbackAndAction with

/Username as the partition key in Data Explorer in the Azure portal, as

shown in Figure 4-19.

Chapter 4 Accessing Cosmos DB in Azure Functions

98

Then click OK to complete the creation process.

Let’s switch to Visual Studio as you’ll be creating another Azure

Functions function that will be listening to the lowratings queue and

saving the data into the FeedbackAndAction container. To do that,

right-click the Visual Studio project and then choose Add ➤ New

Azure Function. Name the function FollowupFunction, as shown in

Figure 4-20.

Figure 4-19.  Adding a FeedbackAndAction container in Cosmos DB

Chapter 4 Accessing Cosmos DB in Azure Functions

99

The next step is to add a JSON library named Newtonsoft.Json in the

NuGet package manager, as shown in Figure 4-21.

Figure 4-20.  Adding a follow-up function

Figure 4-21.  Adding the Newtonsoft.json package from NuGet

Go back to the FollowupFunction.cs file in Visual Studio and replace

all the code within the namespace with the code in Listing 4-3.

Chapter 4 Accessing Cosmos DB in Azure Functions

100

Listing 4-3.  Follow-up Function’s Code

public static class FollowupFunction

 {

 [FunctionName("FollowupFunction")]

 �public static void Run([QueueTrigger("lowratings",

Connection = "AzureWebJobsStorage")]string myQueueItem,

 �[CosmosDB(databaseName: "IceCreamDB",

collectionName: "FeedbackAndAction",

ConnectionStringSetting = "icecreamdbcs")]out

dynamic document,

 ILogger log)

 {

 �log.LogInformation($"C# Queue trigger function

processed: {myQueueItem}");

 dynamic obj = JValue.Parse(myQueueItem);

 document = new FeedbackAndAction()

 {

 Id = obj.id.ToString(),

 ProductId = obj.ProductId.ToString(),

 Username = obj.Username.ToString(),

 �DetailFeedback = "The customer finds the ice

cream is too sweet",

 �NextAction = "Inform the kitchen to reduce the

sugar"

 };

 }

 }

Chapter 4 Accessing Cosmos DB in Azure Functions

101

Several changes are made, as follows:

•	 We inserted a document with Cosmos DB properties

such as databaseName, collectionName, and

ConnectionStringSetting for the second parameter in

the Run() method. This basically tells Azure Functions

to perform an output binding with the document.

•	 Within the Run() method, you use JValue to parse

the queue message, which is in JSON format.

Subsequently, you fill in the document parameters with

the respective values.

Let’s run the function by hitting F5 in Visual Studio. If there isn’t any

message in the lowratings queue, you can add a new item in the Rating

container or update an existing item. Make sure to change the Rating

property to value less than 3.

You can verify whether the function ran successfully by checking out the

Items menu in the FeedbackAndAction container, as shown in Figure 4-22.

Figure 4-22.  Verifying the FeedbackAndAction container

Chapter 4 Accessing Cosmos DB in Azure Functions

102

�Summary
You started this chapter by learning about the concept of NoSQL

databases. Then we discussed the capabilities of Cosmos DB. We then

covered how to provision a Cosmos DB account, database, and container.

Finally, you learned how Cosmos DB triggers and bindings work.

Chapter 4 Accessing Cosmos DB in Azure Functions

103© Agus Kurniawan, Wely Lau 2019
A. Kurniawan and W. Lau, Practical Azure Functions,
https://doi.org/10.1007/978-1-4842-5067-9_5

CHAPTER 5

Web Back-End System
In this chapter, you’ll explore how Azure Functions can make interacting

with a web application more productive. You’ll also build a simple project

to see how web applications and Azure Functions can work together.

The following topics will be covered:

•	 Introduction to Azure Functions for web applications

•	 How to develop a web application with Azure

Functions

•	 How to deploy Azure Functions to Microsoft Azure

�Introduction to Azure Functions for Web
Applications
There are many web application platforms that you can use to implement

your web application. ASP.NET, PHP, JSP, and Node.js are just a few

examples of web application platforms that web developers can choose.

Each web platform provides specific features for implementing a web

system.

In general, a web application has a database to store its data and

session, as described in Figure 5-1. A web application can be hosted on a

public host. You also can publish a web application to a cloud server such

as Azure, AWS, or Google Cloud.

104

To develop a web application, developers usually use a web framework

from a web platform. You also need a web server to run a web application.

Using an integrated development tool (IDE) is one way to accelerate your

development.

Azure Functions provides some models to enable you to work with web

applications. Technically, from a security perspective, a web application

usually accepts the HTTP protocol, so one of the ways to connect Azure

Functions to a web application is to use the HTTP protocol.

In this chapter, you’ll use Azure Functions with an HTTP trigger to

interact with a web application.

Figure 5-1.  A general web application

�Building a To-Do Web Application
In this section, you’ll see how to build a simple web application that

accesses Azure Functions. The application will be a to-do web application.

You can add tasks to the web application. Furthermore, the web

application calls Azure Functions to store the tasks in a database.

Chapter 5 Web Back-End System

105

In general, you can implement the demo as shown in Figure 5-2. You

will build a web app in Azure Functions by applying an HTTP trigger. This

scenario will provide services so you can store the task data into the SQL

database. Azure Functions also can serve up task data to the public.

Figure 5-2.  Azure Functions and web applications

For the implementation, you can use an ASP.NET Core web

application. This application will consume Azure Functions to store and

retrieve data from Azure SQL Database. You will need an active Azure

account to deploy your project to Microsoft Azure.

In the following section, you’ll create a project for Azure SQL Database.

�Creating an Azure SQL Database Instance
You can use Azure SQL Database as the data back end. You can use

an existing Azure SQL Database instance or create a new one. You can

perform this task with the Azure portal at https://portal.azure.com.

Figure 5-3 shows a new database being created named azurefuncdb.

Chapter 5 Web Back-End System

https://portal.azure.com

106

Next, you can create a table to store tasks using the web query editor.

Execute the following SQL scripts to create the Todo table:

CREATE TABLE [dbo].[Todo](

 [id] [int] IDENTITY(1,1) NOT NULL,

 [todo] [varchar](50) NOT NULL,

 [posted] [datetime] NOT NULL,

 CONSTRAINT [PK_Todo] PRIMARY KEY CLUSTERED

(

 [id] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_

DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON

[PRIMARY]

) ON [PRIMARY]

GO

Figure 5-3.  New Azure SQL Database instance

Chapter 5 Web Back-End System

107

To connect the web application to the Azure SQL Database instance,

you need a database connection string. You can get this setting in the

“Connection strings” menu from your database in Azure SQL Database.

Copy the ADO.NET connection string data as shown in Figure 5-4.

Figure 5-4.  Database connection string

You should change the {your_username} and {your_password} values

for your Azure SQL Database configuration.

Next, you’ll create a project for Azure Functions.

�Creating an Azure Functions Project
You created a project for Azure Functions in the previous chapter. For

this demo, you can create an Azure Functions project with C# as the

programming language, as shown in Figure 5-5.

Chapter 5 Web Back-End System

108

For the example implementation, create an Azure Functions project

called TodoFunctions. You can use the “HTTP trigger” project template, as

shown in Figure 5-6. After creating a project, you can continue to develop

the Azure Functions program.

Figure 5-5.  Creating an Azure Functions project

Chapter 5 Web Back-End System

109

�Developing an Azure Functions Program
In this section, you’ll develop a program for Azure Functions. The program

will store and retrieve tasks from your Azure SQL Database instance.

Figure 5-7 shows the general project structure, which consists of three files.

•	 The Todo.cs file is a model object for tasks.

•	 The AzureSQLDB.cs file is a data access object to

perform SQL queries against Azure SQL Database.

•	 The ToDoFunc.cs file is an Azure Functions

implementation.

You will implement these files in this section.

Figure 5-6.  HTTP trigger project template for Azure Functions

Chapter 5 Web Back-End System

110

First, you’ll create a model for tasks. Create a class called Todo and

define three properties for the Todo model: Id, TodoMessage, and Posted.

You can write this code:

using System;

namespace TodoFunctions

{

 public class Todo

 {

 public int Id { get; set; }

 public string TodoMessage { get; set; }

 public DateTime Posted { get; set; }

 }

}

Figure 5-7.  Project structure for TodoFunctions

Chapter 5 Web Back-End System

111

Next, create a data access object to interact with Azure SQL Database.

You can create a class called AzureSQLDB and define two static methods,

GetAllTodo() and InsertTodo(). The GetAllTodo() method is used to

retrieve all tasks from Azure SQL Database. The InsertTodo() method is

used to insert a task into the Azure SQL Database instance.

To access the Azure SQL Database instance, you can use ADO.NET

from the SqlClient package. You define the System.Data.SqlClient

package in the AzureSQLDB object, like so:

using System.Data.SqlClient;

In the GetAllTodo() method, you get a database connection string by

calling the Environment.GetEnvironmentVariable() method. You define

azure_sql for the database connection string name. You can also define a

list variable as a collection of Todo objects.

public static List<Todo> GetAllTodo()

{

 List<Todo> list = new List<Todo>();

 string db = Environment.GetEnvironmentVariable("azure_sql");

You can use a SqlConnection object to open a connection to Azure

SQL Database with a certain database connection string. You pass a SQL

query to the SqlCommand object to retrieve all the tasks from the Todo table.

All the tasks are stored in a collection of Todo objects using the

SqlDataReader object. The following is the implementation code:

 try

 {

 using (SqlConnection conn = new SqlConnection(db))

 {

 conn.Open();

 var text = "SELECT * from [Todo]";

Chapter 5 Web Back-End System

112

 using (SqlCommand cmd = new SqlCommand(text, conn))

 {

 var rd = cmd.ExecuteReader();

 while (rd.Read())

 {

 var o = new Todo();

 o.Id = (int)rd["id"];

 o.TodoMessage = (string)rd["todo"];

 o.Posted = (DateTime)rd["posted"];

 list.Add(o);

 }

 rd.Close();

 }

 }

 }

 catch (Exception)

 {

 }

Next, you declare the InsertTodo() method to insert a task into Azure

SQL Database. This method needs a task name as the method input. First,

you get a database connection string from the azure_sql setting.

public static bool InsertTodo(string todo)

{

 string db = Environment.GetEnvironmentVariable("azure_sql");

You can use the SQL query to insert data into Azure SQL Database.

You can perform this step using the SqlCommand object. You call

ExecuteNonQuery() from the SqlCommand object to insert data into the

database.

Chapter 5 Web Back-End System

113

using (SqlConnection conn = new SqlConnection(db))

{

 conn.Open();

 �var text = "INSERT INTO [Todo](todo,posted) VALUES

(@todo,getdate())";

 using (SqlCommand cmd = new SqlCommand(text, conn))

 {

 cmd.Parameters.Add(new SqlParameter("@todo", todo));

 cmd.ExecuteNonQuery();

 }

}

Last, you need to edit the Azure Functions code in the TodoFunc.cs

file. First, declare all required packages for your project, as shown here:

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;

using Microsoft.AspNetCore.Http;

using Microsoft.Extensions.Logging;

using Newtonsoft.Json;

using System.Data.SqlClient;

When you create a project for Azure Functions with an HTTP trigger,

you will get a sample program. You can modify this code for your project

scenario. For example, you can define the Azure Functions function

with the name ToDoFunc so you can handle HTTP GET and HTTP POST

requests from clients.

If you receive an HTTP GET request, you perform a SQL query to

retrieve all the tasks from the database. You call the GetAllTodo() method

from the AzureSQLDB object.

Chapter 5 Web Back-End System

114

public static class ToDoFunc

{

 [FunctionName("ToDoFunc")]

 public static async Task<IActionResult> Run(

 �[HttpTrigger(AuthorizationLevel.Anonymous, "get",

"post", Route = null)] HttpRequest req,

 ILogger log)

 {

 �log.LogInformation("TODO HTTP trigger function

processed a request.");

 if(req.Method.ToLower() == "get")

 {

 var list = AzureSQLDB.GetAllTodo();

 �return (ActionResult)new

OkObjectResult(JsonConvert.SerializeObject(list));

 }

Furthermore, if you receive an HTTP POST request, you perform a SQL

query to insert a task into the database. You parse the incoming JSON data

from the HTTP request packet. You call the InsertTodo() method from the

AzureSQLDB object.

else

{

 �string requestBody = await new StreamReader(req.Body).

ReadToEndAsync();

 dynamic data = JsonConvert.DeserializeObject(requestBody);

 string todo = data?.message;

Chapter 5 Web Back-End System

115

 if(AzureSQLDB.InsertTodo(todo))

 return (ActionResult)new OkObjectResult($"succeed");

 else

 return (ActionResult)new OkObjectResult($"failed");

}

Save all the code. Next, you deploy your Azure Functions project to the

Azure server.

�Deploying Your Azure Functions Project
You can deploy your project to Microsoft Azure easily through Visual

Studio. You should download a publish profile file from Azure Functions.

Then, you use the profile file in the project, as shown in Figure 5-8.

Figure 5-8.  Deploying Azure Functions to the Azure server

Chapter 5 Web Back-End System

116

You can also configure the project dependencies. To add Azure SQL

Database, click the Add link. After clicking, you get the dialog shown in

Figure 5-9. Select your existing Azure SQL Database instance.

Figure 5-9.  Adding the Azure SQL Database instance to Azure
Functions

Set the database connection string name to azure_sql. You also need

to set the username and password for Azure SQL Database. If done, click

the Add button.

Now you can publish the project to Azure. Check the Application Settings

area on the publishing form to see if you were successful (Figure 5-8). You

should see azure_sql for the database connection string name, as shown in

Figure 5-10.

Chapter 5 Web Back-End System

117

Next, you will test your Azure Functions program.

�Testing Azure Functions
Microsoft provides an HTTP trigger for Azure Functions. You can find this

tool in Azure Functions. Open Azure Functions, and you will see the

“View files” and Test tabs. Click the Test tab to see the testing tool, as

shown in Figure 5-11. This tool can be used to perform HTTP POST and

GET requests. You also add request headers and a body.

Figure 5-10.  Checking the application settings for Azure SQL
Database in Azure Functions

Chapter 5 Web Back-End System

118

For our simple scenario, you’ll add a task. So, submit an HTTP POST

to Azure Functions to insert a new task. You can set the HTTP method

as POST. You also add a request header called content-Type with the

application/json value. Then, you can write the request body as follows:

{

 "message": "this todo from web test"

}

Now you can run this tool by clicking the Run button.

After it’s executed, you should get a response from Azure Functions.

Testing log and output response from Azure Functions on the bottom of

your tool. Figure 5-12 shows the result of our test in Azure Functions.

Figure 5-11.  Testing Azure Functions for the HTTP POST scenario

Chapter 5 Web Back-End System

119

To verify whether your task data is stored in a database, you can use

the query editor tool from Microsoft. You perform the following query by

typing this script:

select * from dbo.todo

Figure 5-13 shows our the query program output.

Figure 5-12.  A result of testing Azure Functions

Figure 5-13.  Verifying data on Azure SQL Database

Chapter 5 Web Back-End System

120

Next, you can test that Azure Functions is retrieving all the tasks by

performing an HTTP GET request to Azure Functions. You don’t need to

put any data in the request body. After executing the request, you will see

the JSON data in the Output panel, as shown in Figure 5-14.

Figure 5-14.  Testing Azure Functions for an HTTP GET scenario

You also can perform testing using Postman. This tool can perform

HTTP GET/POST requests. It’s suitable for your RESTful projects. You can

get this tool at https://www.getpostman.com.

Using the Postman tool is easy. You put in a targeted server and set

up HTTP request parameters. For this scenario, you can get the Azure

Functions URL from Azure Functions in the Azure portal, as shown in

Figure 5-15.

Chapter 5 Web Back-End System

https://www.getpostman.com

121

For demo purposes, enter your Azure Functions URL in the Postman

tool with GET mode to perform an HTTP GET. Then, click the Send button.

If you succeed, you will see the response’s output. Check the output data

on the Body tab, as shown in Figure 5-16.

Figure 5-15.  Getting the Azure Functions URL

Figure 5-16.  Testing Azure Functions using the Postman tool

Chapter 5 Web Back-End System

122

After testing Azure Functions, you can continue to develop your web

application in the next section.

�Developing a Client Web Application
You can develop an ASP.NET Core web application to access Azure

Functions. In this section, you’ll use the ASP.NET MVC project template, as

shown in Figure 5-17.

Next you’ll add a model to the project. Add the Todo.cs file into the

Models folder from your project. Then, write the following code:

using System;

using System.ComponentModel.DataAnnotations;

namespace TodoWebApp.Models

{

 public class Todo

 {

 public int Id { get; set; }

 [Required]

 [Display(Name = "Todo Message")]

 public string TodoMessage { get; set; }

 public DateTime Posted { get; set; }

 }

}

Chapter 5 Web Back-End System

123

Next, modify the view Index.cshtml. You can add your model to the

script.

@model TodoWebApp.Models.Todo

Then create a form and a table with the <div> tag to populate your

tasks from Azure Functions.

 <div>

 <h4>Todo Web App</h4>

 <p>Fill your todo on this field.</p>

 <div class="form-group">

 <label class="control-label">Todo Message</label>

 �<textarea id="txtMessage" class="form-control"

rows="5" cols="20"></textarea>

 </div>

Figure 5-17.  Project structure for the web application

Chapter 5 Web Back-End System

124

 <div class="form-group">

 �<input type="button" value="Save" class="btn btn-

primary" onclick="saveData()" />

 <label id="status"class="control-label"></label>

 </div>

 </div>

 <div class="container">

 <h2>List of Todo</h2>

 <div id="todolist" class="list-group">

 </div>

 </div>

The user will insert a task on Textare with an ID of txtMessage.

When the user clicks the Save button, you call the saveData() JavaScript

function. Furthermore, you populate all the tasks on the table <div> with

an ID of todolist. This task data is populated from JavaScript scripts. You

implement the JavaScript scripts at the bottom of the <HTML> tag.

First, you call the reloadTodo() JavaScript function when the page

document is loaded. You retrieve all the tasks from Azure Functions

by calling the jQuery get() function. This function performs an HTTP

GET. Here we are passing https://ilmudata.azurewebsites.net/api/

ToDoFunc to Azure Functions. Change it to your own Azure Functions URL.

<script>

 $(document).ready(function () {

 $('#status').html("");

 reloadTodo();

 });

 function reloadTodo() {

 $.get("https://ilmudata.azurewebsites.net/api/ToDoFunc",

 function (data) {

Chapter 5 Web Back-End System

https://ilmudata.azurewebsites.net/api/ToDoFunc
https://ilmudata.azurewebsites.net/api/ToDoFunc

125

 console.log(data);

 $.each(JSON.parse(data), function (i, item) {

 �$('<h4

class="list-group-item-heading">' + item.

TodoMessage +

 �'</h4><p class="list-group-item-text">' +

item.Posted +

 '</p>').appendTo("#todolist");

 });

 });

 }

You also implement the saveData() JavaScript function to store a

task into Azure SQL Database. You get a task name using jQuery. Then,

you post a task data in JSON format to Azure Functions using the post()

function from jQuery. Change the Azure Functions URL to your own.

 function saveData() {

 var txt = $('textarea#txtMessage').val();

 var data = {

 message: txt

 };

 $.post("https://ilmudata.azurewebsites.net/api/ToDoFunc",

 JSON.stringify(data),

 function (result) {

 console.log(result);

 if (result == "succeed") {

 $('#status').html("Saving data was succeed");

 $('textarea#txtMessage').val(");

 reloadTodo();

Chapter 5 Web Back-End System

126

 } else {

 $('#status').html("Saving data was failed");

 }

 });

 }

</script>

Since you use jQuery in the ASP.NET Core view, you should modify the

_Layout.cshtml file so the jQuery file is loaded in the HTML header. You

can modify it as shown here:

<head>

 <meta charset="utf-8" />

 �<meta name="viewport" content="width=device-width, initial-

scale=1.0" />

 <title>@ViewData["Title"] - Todo WebApp</title>

 �<script src="https://cdnjs.cloudflare.com/ajax/libs/

jquery/3.3.1/jquery.min.js"

 asp-fallback-src="~/lib/jquery/dist/jquery.min.js"

 asp-fallback-test="window.jQuery"

 crossorigin="anonymous"

 �integrity="sha256-FgpCb/KJQlLNfOu91ta32o/

NMZxltwRo8QtmkMRdAu8=">

 </script>

</head>

Save your code now.

Now you can run the ASP.NET Core application. Write your task and

then click the Save button. You should get a confirmation. You also get a

list of existing tasks. Figure 5-18 shows our program output in the ASP.NET

Core web application.

Chapter 5 Web Back-End System

127

If you get errors regarding CORS, you can set Azure Functions to

enable CORS operations. You can find the setting on the “Platform

features” tab in Azure Functions, as shown in Figure 5-19. Add your web

URL from the ASP.NET Core web application.

Figure 5-18.  Program output in ASP.NET Core web application

Chapter 5 Web Back-End System

128

Figure 5-19.  Configuring CORS in Azure Functions

�Summary
In this chapter, you learned how to access Azure Functions from a web

application. You also developed a simple project by implementing an

Azure Functions program, a web application, and an Azure SQL Database

instance. In the next chapter, you will focus on how to work with Azure

Functions and mobile applications.

Chapter 5 Web Back-End System

129© Agus Kurniawan, Wely Lau 2019
A. Kurniawan and W. Lau, Practical Azure Functions,
https://doi.org/10.1007/978-1-4842-5067-9_6

CHAPTER 6

Mobile Back End
Mobile applications have been one of the greatest innovations of the

Internet era. Many businesses provide mobile applications to increase

sales or drive business to their company. This chapter explores how to

integrate mobile applications with Azure Functions. Essentially, Azure

Functions works as the back end to serve a mobile application.

The following topics are covered in this chapter:

•	 Mobile platforms

•	 Using Azure Functions for mobile applications

•	 Building an Azure Functions program for an Android

application

�Reviewing Mobile Platforms
Nowadays people can’t get away from their mobile devices. People use the

mobile applications on their mobile devices to increase their productivity.

Others use mobile applications to have fun such as when playing mobile

game applications.

There are two mainstream platforms for mobile applications, Android

and iOS. Android is built by Google, and iOS is built by Apple. Each mobile

platform provides an application store so that people can download and

install mobile applications. Some applications are free, and others cost

money.

130

To develop an Android application, you need to register as an Android

developer. All the development tools are free. You can get all the Android

resources at https://developer.android.com. To publish your Android

application to the Google Play Store, you have to pay Google. Currently, the

cost is $25 for a lifetime. Google provides an Android emulator to test your

program, so you don’t need to get an Android device to run your program.

Still, it’s recommended that you have an Android device to make sure your

Android application runs well on a real device.

To develop an iOS application, you can use Objective-C and Swift. You

also need a Mac to develop iOS programs. To access the iOS development

resources, you need a developer license from Apple. Currently, the Apple

developer license is $99 per year. You can get more information about

registering to be an Apple developer at https://developer.apple.com.

Sometimes you need to maintain Android and iOS versions of your

mobile application. This has been a painful experience, but there is another

option, which is to use hybrid approach. You can use the Ionic (https://

ionicframework.com) and React Native https://facebook.github.

io/react-native/ (frameworks). These frameworks use HTML5 as the

programming language. If you love C#, you can choose Xamarin to develop

Android and iOS applications. You can get more information about Xamarin

development on https://visualstudio.microsoft.com/xamarin/ website.

In this chapter, we focus on the Android platform when creating a

mobile application to access Azure Functions.

�Introducing Azure Functions for Mobile
Applications
Microsoft provides an Azure solution to enable you to work with various

mobile platforms. You can host app services to serve your mobile requests

over HTTP/HTTPS. You can also build mobile notifications to create more

interactions between your application and users. You can see a list of

Chapter 6 Mobile Back End

https://developer.android.com
https://developer.apple.com
https://ionicframework.com
https://ionicframework.com
https://facebook.github.io/react-native/
https://facebook.github.io/react-native/
https://visualstudio.microsoft.com/xamarin/

131

Azure services that you can use in mobile applications at https://azure.

microsoft.com/en-us/product-categories/mobile/. Figure 6-1 shows

the various Azure services for mobile applications.

Figure 6-1.  Azure services for mobile applications

Azure Functions is one of the Azure services that enables you to

serve your mobile applications. Azure Functions can work as a “service

interface” so you can access internal Azure resources such as Azure SQL

Database, Azure Storage, and other compute resources. Azure Functions

with an HTTP trigger can be used as the interface to your back end for

mobile applications. In this chapter, you’ll explore how to access Azure

Functions from mobile applications.

First, you’ll develop an Android application that works with Azure

Functions. Specifically, you’ll learn how to make a registration application

on Android.

Chapter 6 Mobile Back End

https://azure.microsoft.com/en-us/product-categories/mobile/
https://azure.microsoft.com/en-us/product-categories/mobile/

132

�Building a Registration Mobile Application
In this section, you’ll learn how to develop a mobile application to access

Azure Functions. For the mobile platform implementation, we will use

the Android platform. Azure Functions will perform the user registration

process. All Android requests will be handled by Azure Functions.

Figure 6-2 shows the demo scenario. The Android application will send

the user registration data to the Microsoft Azure server through Azure

Functions. You’ll also prepare Azure Functions to listen for incoming

messages via the HTTP POST protocol. Once Azure Functions receives

data, Azure Functions will store the data in Azure SQL Database.

Figure 6-2.  A demo scenario of a mobile application and Azure
Functions

To implement the demo, you should have an active account on

Microsoft Azure. Some Azure resources will probably cost money, such as

Azure SQL Database.

Next, you’ll create an Azure SQL Database instance.

�Creating an Azure SQL Database Instance
All the user registration data will be stored in Azure SQL Database. Azure

SQL Database uses SQL Server running in a cloud environment. You can find

detailed service information and a list of the features of Azure SQL Database at

https://azure.microsoft.com/en-us/services/sql-database/.

Chapter 6 Mobile Back End

https://azure.microsoft.com/en-us/services/sql-database/

133

Now you’ll create a database on Azure SQL Database or use your

existing Azure SQL Database instance. Figure 6-3 shows the dashboard for

Azure SQL Database. You can see our funcsql server has a database called

azurefuncdb on it.

Figure 6-3.  Azure SQL Database dashboard

Next, you’ll create a table for demo purposes using SQL scripting. To

keep the data model simple, the user registration application has two data

items: full name and e-mail. You’ll name the table UserReg, and it will have

four columns, as follows:

•	 id is a primary key of the UserReg table.

•	 fullname is the full name of the user.

•	 email is the user’s e-mail.

•	 posted is a date of the received data.

Chapter 6 Mobile Back End

134

Create the UserReg table using the following SQL script:

CREATE TABLE [dbo].[UserReg](

 [id] [int] IDENTITY(1,1) NOT NULL,

 [fullname] [varchar](50) NOT NULL,

 [email] [varchar](30) NOT NULL,

 [posted] [datetime] NOT NULL,

 CONSTRAINT [PK_UserReg] PRIMARY KEY CLUSTERED

(

 [id] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_

DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON

[PRIMARY]

) ON [PRIMARY]

GO

You can run these scripts in the query editor available on the database

dashboard in your Azure SQL Database instance. You can also run this

script using SQL Server Management Studio with remoting to the Azure

SQL Database server. Figure 6-4 shows the UserReg table on our database.

Chapter 6 Mobile Back End

135

Next, you can create an Azure Functions project using Visual Studio to

serve all the requests from Android applications.

�Creating an Azure Functions Project
Azure Functions is designed to be easy to use. You can develop an Azure

Functions program using the Azure web editor or using Visual Studio. You

also can create an Azure Functions program with the Azure CLI. In this

section, you’ll learn how to develop an Azure Functions program using

Visual Studio 2019.

You can start creating the Azure Functions project by selecting the

Azure Functions template. Since we’re talking about Android applications

in this chapter, use the HTTP trigger template to start your Azure

Functions program, as shown in Figure 6-5. An Android application can

communicate over HTTP easily.

Figure 6-4.  Creating the UserReg table in Azure SQL Database

Chapter 6 Mobile Back End

136

You’ll want to set up a storage account for your project. Set the access

rights to Anonymous. Fill in the project name; we used RegAzureFunctions.

After filling in all the project fields, click the OK button.

Figure 6-5.  Creating an Azure Functions project with an HTTP trigger

You will get some template code for your Azure Functions project.

Before you write any new code, you need to add the prerequisite libraries.

So, add the System.Data.SqlClient and Newtonsoft.Json libraries to

your project through NuGet.

This program scenario is to listen for an HTTP trigger. You will receive

a message from an Android application in JSON format in the following

format:

{

 "fullname": "<full name of user>",

 "email":"<user email>"

}

Chapter 6 Mobile Back End

137

You can encode this JSON message from the HTTP body request and

convert it to a UserReg object via the deserialization process by calling

the JsonConvert.DeserializeObject() method. This method is part of

the Newtonsoft.Json library. After obtaining the UserReg object, Azure

Functions will store it in Azure SQL Database.

The UserReg object holds the full name and e-mail of the user. You

define the UserReg object as the UserReg.cs file. The following is the

UserReg object implementation:

using System;

namespace RegAzureFunctions

{

 public class UserReg

 {

 public string FullName { set; get; }

 public string Email { set; get; }

 }

}

To continue the example, we store the UserReg object in Azure SQL

Database and define your own database object, called AzureSQLDB. Then

call the InsertRegistration() method to store the data in the database.

The following is the Azure Functions code implementation:

[FunctionName("RegAzureFunc")]

public static async Task<IActionResult> Run(

 �[HttpTrigger(AuthorizationLevel.Anonymous, "post", Route =

null)] HttpRequest req,

 ILogger log)

{

 �log.LogInformation("C# HTTP trigger function processed a

request.");

Chapter 6 Mobile Back End

138

 �string requestBody = await new StreamReader(req.Body).

ReadToEndAsync();

 �UserReg user = JsonConvert.DeserializeObject<UserReg>(reque

stBody);

 return AzureSQLDB.InsertRegistration(user)

 �? (ActionResult)new OkObjectResult($"Registration data

was received")

 �: new BadRequestObjectResult("There was error to save

data into Azure SQL Database");

}

The AzureSQLDB object applies ADO.NET objects to manipulate data

for SQL Server. You define the InsertRegistration() method to store

data in Azure SQL Database, and you use the SQLCommand object to execute

the INSERT query to store the database by calling the ExecuteNonQuery()

method and passing the UserReg object.

public static bool InsertRegistration(UserReg user)

{

 string db = Environment.GetEnvironmentVariable("azure_sql");

 try

 {

 using (SqlConnection conn = new SqlConnection(db))

 {

 conn.Open();

 �var text = "INSERT INTO [UserReg]

(fullname,email,posted) " +

 "VALUES(@fullname,@email,getdate())";

Chapter 6 Mobile Back End

139

 using (SqlCommand cmd = new SqlCommand(text, conn))

 {

 �cmd.Parameters.Add(new SqlParameter

("@fullname", user.FullName));

 �cmd.Parameters.Add(new SqlParameter("@email",

user.Email));

 cmd.ExecuteNonQuery();

 }

 }

 }

 catch (Exception)

 {

 return false;

 }

 return true;

}

You can obtain a connection string for Azure SQL Database from

the azure_sql setting, which you define when publishing your Azure

Functions project to Microsoft Azure. Now you can compile your Azure

Functions project. Make sure you don’t get any errors while compiling

the project.

So, you have developed an Azure Functions project using Visual

Studio. Next, you will publish it.

Chapter 6 Mobile Back End

140

�Publishing an Azure Functions Program
Publishing an Azure Functions project with Visual Studio is easy. Right-

click the Azure Functions project and then select the Publish menu. You

can publish the project by logging in with your existing Azure account, or

you can import the Azure Functions profile file from Azure Functions.

For this demo, you will publish your project into the existing Azure

Functions account by selecting your existing Azure App Service account

and then choosing your Azure Functions service, as shown in Figure 6-6.

Click the OK button when you’re done.

Figure 6-6.  Choosing an existing Azure Functions profile

Chapter 6 Mobile Back End

141

After selecting the Azure profile for Azure Functions, you will see the

publishing settings, as shown in Figure 6-7. Next, you can configure a

connection string for Azure SQL Database.

Specifically, you should define the azure_sql setting for your project.

You can copy the database connection string from Azure SQL Database by

clicking the Edit Azure App service setting menu in Figure 6-7. Then, paste

it into azure_sql in the Remote field, as shown in Figure 6-8. When you’re

done, click the OK button to save these publishing settings.

Figure 6-7.  Publish settings in Azure Functions project

After you successfully publish, you will be able to see your Azure

Functions program in the Azure Functions dashboard. Next, you will test

your Azure Functions program.

Chapter 6 Mobile Back End

142

�Testing an Azure Functions Program
You can test Azure Functions programs using the web tool from Azure.

First you open your Azure Functions program on the Azure Functions

dashboard. Then you click the Test tab so you can see the testing features,

as shown in Figure 6-9. For this demo, you can send some dummy

registration data in JSON format. Write this JSON data in the request body:

{

 "fullname": "agus kurniawan",

 "email":"agusk@myemail.com"

}

Figure 6-8.  Configuring a database connection for Azure SQL
Database

Chapter 6 Mobile Back End

143

Click the Run button to execute this tool. You should see verbose

messages during testing in the Logs window, as shown in Figure 6-9. You

also can see the response messages from the Azure Functions server in the

Logs window.

Figure 6-9.  Testing Azure Functions programs using the Azure
Functions web tool

After sending data to Azure Functions, you can verify your data in

Azure SQL Database. Open your database in Azure SQL Database. Then,

perform a SQL query to see your data. You should see the data that was

sent from the web test tool. Figure 6-10 shows our resulting data in Azure

SQL Database.

Chapter 6 Mobile Back End

144

Next, you will learn how to develop an Android program to access an

Azure Functions program.

�Developing an Android Application
You have developed an Azure Functions program and have already

uploaded it to Microsoft Azure. Now you can develop a program for an

Android application. For the development tool, you can use Android

Studio from Google. You can download and install it at https://

developer.android.com/studio.

Microsoft has provided SDK libraries for mobile platforms. For the

Android platform, you can use the Android SDK to access Azure services

using the Azure.Android SDK. Visit https://github.com/Azure/Azure.

Android to get the details.

Figure 6-10.  Displaying UserReg data using the query editor in Azure
SQL Database

Chapter 6 Mobile Back End

https://developer.android.com/studio
https://developer.android.com/studio
https://github.com/Azure/Azure.Android
https://github.com/Azure/Azure.Android

145

For this demo, you will see how to develop an Android program using

Android Studio. You could also develop an Android program using Java or

Kotlin. For this demo, we’re using Java as the programming language to

build the Android application.

Open Android Studio and select the Empty activity template. Fill in

your project name; for instance, we entered RegistrationApp, as shown in

Figure 6-11. Click the Finish button to create your Android project.

Figure 6-11.  Creating an Android project using Android Studio

Now you’ll start to develop the UI. You can open activity_main.

xml and build the UI, as shown in Figure 6-12. You need two EditText

components to hold the full name and e-mail data.

Chapter 6 Mobile Back End

146

Now you can write the Android program. Since you access Azure

Functions with HTTP triggers, you don’t need to use the Azure SDK

directly. You can use any Android library to access HTTP/HTTPS. For this

demo, you’ll use the Volley library to perform HTTP accesses. You can get

further information about Volley at https://developer.android.com/

training/volley.

To work with the Volley library, you can add this library on build.

gradle for the app. You add this library in dependencies{} as follows:

dependencies {

 ...

 implementation 'com.android.volley:volley:1.1.1'

}

You add the logic for the program by clicking the Register button. First,

you can obtain the full name and e-mail from the EditText components.

Then, you construct JSON data to be sent to Azure Functions. You also

Figure 6-12.  Designing the Android UI

Chapter 6 Mobile Back End

https://developer.android.com/training/volley
https://developer.android.com/training/volley

147

define the URL for Azure Functions to put in the url variable. You can get

the Azure Functions URL from the Azure Functions dashboard. Open your

Azure Functions program and then click “Get function URL,” as shown

in Figure 6-13. Put this value into the url variable. You also construct

RequestQueue from the Volley object.

try {

 EditText fullName = (EditText) findViewById(R.id.txtFullName);

 EditText email = (EditText) findViewById(R.id.txtEmail);

 RequestQueue queue = Volley.newRequestQueue(this);

 �final String url = "https://regazurefunctions.

azurewebsites.net/api/RegAzureFunc";

 JSONObject jsonBody = new JSONObject();

 jsonBody.put("fullname", fullName.getText());

 jsonBody.put("email", email.getText());

 final String requestBody = jsonBody.toString();

Figure 6-13.  Getting the Azure Functions URL

Chapter 6 Mobile Back End

148

Next, send your JSON data to the Azure Functions server. You

can use Volley to implement the sending process. You construct the

StringRequest object to listen for onRensponse() and ErrorListener().

Write all the information into the Log object so you can monitor these

messages.

StringRequest postRequest = new StringRequest(Request.Method.

POST, url,

 new Response.Listener<String>()

 {

 @Override

 public void onResponse(String response) {

 // response

 Log.i("VOLLEY", response);

 }

 },

 new Response.ErrorListener()

 {

 @Override

 public void onErrorResponse(VolleyError error) {

 // error

 Log.e("VOLLEY", error.getMessage());

 }

 }

Override some methods on StringRequest such as

getBodyContentType() to set JSON as the body content type. You also

override the getBody() method to send your JSON data into the Volley

object.

Chapter 6 Mobile Back End

149

) {

 @Override

 public String getBodyContentType() {

 return "application/json; charset=utf-8";

 }

 @Override

 public byte[] getBody() throws AuthFailureError {

 try {

 �return requestBody == null ? null : requestBody.

getBytes("utf-8");

 } catch (UnsupportedEncodingException uee) {

 �VolleyLog.wtf("Unsupported Encoding while trying to

get the bytes of %s using %s", requestBody, "utf-8");

 return null;

 }

 }

 @Override

 �protected Response<String> parseNetworkResponse(NetworkResp

onse response) {

 String responseString = "";

 if (response != null) {

 responseString = String.valueOf(response.statusCode);

 // can get more details such as response.headers

 }

 �return Response.success(responseString,

HttpHeaderParser.parseCacheHeaders(response));

 }

};

Chapter 6 Mobile Back End

150

Now pass the StringRequest object into the RequestQueue object. You

also show a notification to the user using the Toast object. You catch all

errors with try-catch in your code.

 queue.add(postRequest);

 Toast.makeText(getApplicationContext(),

 "Data was sent to Azure Queue", Toast.LENGTH_SHORT)

 .show();

}

catch (Exception e) {

 Toast.makeText(getApplicationContext(),

 e.getMessage(), Toast.LENGTH_SHORT)

 .show();

}

Last, set the permission for your Android app to be able to work on the

Internet. Put this in the AndroidManifest.xml file:

<uses-permission android:name="android.permission.INTERNET" />

Save all your code. Now you can build and run this program to the

Android emulator, as shown in Figure 6-14. Fill in the full name and e-mail.

Then, click the Register button to send the data to Azure Functions. Make

sure your Android emulator has Internet access to enable users to submit

data to Azure Functions.

Chapter 6 Mobile Back End

151

Figure 6-14.  Android application accessing Azure Functions

After clicking, you can check Azure SQL Database. You should see

your data in Azure SQL Database. You can perform a SELECT query on

the UserReg table. Figure 6-15 shows the data that we sent to Azure SQL

Database.

Chapter 6 Mobile Back End

152

Figure 6-15.  Verifying data in Azure SQL Database

�Summary
In this chapter, you learned how to access Azure Functions from an

Android application. You also developed a simple project, a user

registration application, by integrating Azure Functions and Azure SQL

Database.

In the next chapter, you will learn how to build microservices by

applying Azure Functions.

Chapter 6 Mobile Back End

153© Agus Kurniawan, Wely Lau 2019
A. Kurniawan and W. Lau, Practical Azure Functions,
https://doi.org/10.1007/978-1-4842-5067-9_7

CHAPTER 7

Serverless
Microservices
Microservices provide scalability and availability for applications.

Developing a microservice means you are developing a loosely coupled

system and your application will be split into various services. In this

chapter, you’ll explore how to build microservices with Azure Functions.

The following topics are covered in this chapter:

•	 Introduction to microservices

•	 How to implement microservices with Azure Functions

•	 How to develop and test microservices

�Introducing Microservices
If you are a web developer, you probably have built a web application

with a database server. Some developers apply a tiers approach when

developing web applications. Figure 7-1 shows the general design of a web

application. The core business process is built in the business layer, and

the data layer is used to manage the data going to the database servers.

154

When the number of users accessing a web application increases,

you’ll usually scale your web application. If your web application uses a

tiers approach, your design is a tightly coupled system. This means you can

scale your business and data layers.

One solution uses multiple distributions of a web application. You

can design the scalability of a web application as shown in Figure 7-2. In

this scenario, you deploy different web application instances on different

computer machines or virtual machines.

Web
Business
Layer

Data
Layer Data

Figure 7-1.  A general design for a web application

Web
Business
Layer

Data
Layer Data

Web
Business
Layer

Data
Layer Data

Web
Business
Layer

Data
Layer Data

Figure 7-2.  Scaling a web application

Chapter 7 Serverless Microservices

155

One of the disadvantages of the tiers approach to a web application is

that it is not easy to manage the data and sessions. When you change the

code in the business layer, you have to deploy the revised web application

to all the servers.

Another solution is to scale the web application to use microservices.

In this way, you separate some services from the tiers architecture. Each

service has its own business logic and data. In general, you can migrate the

web application tier-based model to the microservices model, as shown in

Figure 7-3. Each service can take care of the user data. With microservices,

you can work with different versions among services.

In this chapter, you will learn how to develop microservices using

Microsoft Azure and Azure Functions. You will create a simple demo for

handling simple transactions.

Chapter 7 Serverless Microservices

156

In this chapter, we will focus on developing microservices with

Microsoft Azure and Azure Functions.

Web

Business
Layer

Data

Data
Layer

Figure 7-3.  Migrating a web application to a microservices
architecture

Chapter 7 Serverless Microservices

157

�Implementing Microservices with Azure
Functions
We have reviewed the basics of microservices. Now you will learn how

to implement microservices with Microsoft Azure. In general, you

can build microservices with Microsoft Azure easily. In fact, Microsoft

provides various cloud services to develop microservices; everything from

application services to database services can be used in your microservices

design. You can combine some Azure resources as microservice

applications. Application state data can be stored in Azure Storage or

Azure Database.

You can use Azure Service Fabric to implement a microservices

solution. You can create, deploy, and manage various containers in Azure

Service Fabric. You can review this service at https://azure.microsoft.

com/en-in/services/service-fabric. If you have a plan to build

microservices using Azure Functions, you can put the business program

into Azure Functions. To handle states and data, you can use Azure

Storage, Azure SQL Database, or other Azure storage services.

Furthermore, you can review some Azure services to build a

microservices application. Microsoft has provided some guidelines for

microservices development at https://docs.microsoft.com/en-us/

azure/architecture/microservices/.

Next, you’ll see how to build a demo to develop microservices with

Azure Functions. Specifically, you’ll make a simple order application.

�Building a Microservices System with Azure
Functions
In this section, you’ll develop a microservices application with Azure

Functions. The application will serve orders from HTTP web services and

Azure Storage. Figure 7-4 shows the demo scenario. An order can be made by

Chapter 7 Serverless Microservices

https://azure.microsoft.com/en-in/services/service-fabric
https://azure.microsoft.com/en-in/services/service-fabric
https://docs.microsoft.com/en-us/azure/architecture/microservices/
https://docs.microsoft.com/en-us/azure/architecture/microservices/

158

calling HTTP services and Azure Storage. The application can call HTTP POST

to make a transaction. This process will be handled by Azure Functions. Azure

Functions will put this order into Azure Queue. Other applications also can

make a transaction by putting an order into Azure Queue directly.

Once an order is received by Azure Queue, your Azure Functions

application can pick up and process the transaction. All transactions will

be stored in Azure SQL Database.

Figure 7-4.  A demo scenario for microservices with Azure Functions

To implement this demo, you should have an active account on

Microsoft Azure. Some Azure resources probably will cost money such as

Azure SQL Database.

Next, you’ll create an Azure SQL Database instance.

�Creating an Azure SQL Database Instance
All transactions are stored in Azure SQL Database. You can learn more

about the Azure SQL Database service at https://azure.microsoft.com/

en-us/services/sql-database/. You can create a new database server

or use an existing database. For instance, in this example, we’re creating a

database called azurefuncdb.

Chapter 7 Serverless Microservices

https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/

159

Next, you’ll create a table for example purposes using SQL scripting.

For a simple data model, your order transaction has four data items:

product name, price, quantity, and buyer. So, you’ll define a table called

FuncOrder with these four columns:

•	 id is a primary key of the FuncOrder table.

•	 productname is a product name.

•	 price is the product price.

•	 quantity is the quantity of the product order.

•	 buyer is the name of the buyer.

•	 posted is the date of the received data.

You can create the FuncOrder table using the following SQL:

CREATE TABLE [dbo].[FuncOrder](

 [id] [int] IDENTITY(1,1) NOT NULL,

 [productname] [varchar](30) NOT NULL,

 [price] [numeric] NOT NULL,

 [quantity] [int] NOT NULL,

 [buyer] [varchar](15) NOT NULL,

 [posted] [datetime] NOT NULL,

 CONSTRAINT [PK_FuncOrder] PRIMARY KEY CLUSTERED

(

 [id] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_

DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON

[PRIMARY]

) ON [PRIMARY]

GO

You can run these scripts in the query editor from the database

dashboard in Azure SQL Database, or you can run this script using SQL

Server Management Studio with remoting to the Azure SQL Database server.

Chapter 7 Serverless Microservices

160

Next, you’ll create an Azure Functions project to serve all the requests

from Android applications.

�Creating an Azure Functions Project
In this section, you’ll develop an Azure Functions project. As shown in

Figure 7-4, you will create two Azure Functions in one project using Visual

Studio 2019. Create a new project with the Azure Functions template with

.NET Core.

Since you have two Azure Functions functions, you can use two Azure

Functions with HTTP Trigger and Queue Trigger templates. Name them

OrderHttpApi for the HTTP trigger and OrderProcFunc for the queue trigger.

Next, you’ll need to add some required libraries into your project.

Specifically, add the following required libraries via NuGet:

•	 Microsoft.Azure.Storage.Queue

•	 Microsoft.Azure.WebJobs.Extensions.Storage

•	 Newtonsoft.Json

•	 System.Configuration.ConfigurationManager

•	 System.Data.SqlClient

Next, create a domain object, called FuncOrder, that holds order data.

Create a file called FuncOrder.cs and then write the following code:

using System;

namespace MicroFunctions

{

 public class FuncOrder

 {

 public int Id { get; set; }

 public string ProductName { get; set; }

Chapter 7 Serverless Microservices

161

 public float Price { get; set; }

 public int Quantity { get; set; }

 public string Buyer { get; set; }

 }

}

You can use the FuncOrder object to map your database table,

FuncOrder. To handle data processing from Azure Functions to Azure

SQL Database, you create an AzureSQLDB object. Perform a query to insert

data into Azure SQL Database. For the implementation, you can create a

file called AzureSQLDB.cs in your project. First, you define your required

libraries, as shown here:

using System;

using System.Data.SqlClient;

Next, you create a method, InsertNewOrder(), to insert data into

Azure SQL Database. For the database configuration, you read it from the

azure_sql parameter. To insert data into Azure SQL Database, you can

use an ADO.NET approach by using SQLConnection and SQLCommand to

perform SQL queries.

The InsertNewOrder() method receives a FuncOrder object that will

be inserted into Azure SQL Database. The following is the complete code

for the InsertNewOrder() method:

public class AzureSQLDB

{

public static bool InsertNewOrder(FuncOrder order)

{

 string db = Environment.GetEnvironmentVariable("azure_sql");

 try

 {

 using (SqlConnection conn = new SqlConnection(db))

Chapter 7 Serverless Microservices

162

 {

 conn.Open();

 �var text = "INSERT INTO [FuncOrder](productname,

price,quantity,buyer,posted) " +

 �"VALUES(@productname,@price,@quantity,

@buyer,getdate())";

 using (SqlCommand cmd = new SqlCommand(text, conn))

 {

 �cmd.Parameters.Add(new SqlParameter

("@productname",order.ProductName));

 �cmd.Parameters.Add(new SqlParameter

("@price", order.Price));

 �cmd.Parameters.Add(new SqlParameter

("@quantity", order.Quantity));

 �cmd.Parameters.Add(new SqlParameter

("@buyer", order.Buyer));

 cmd.ExecuteNonQuery();

 }

 }

 }

 catch (Exception)

 {

 return false;

 }

 return true;

}

Now you will continue to develop the Azure Functions project. There

are two functions, OrderHttpApi for the HTTP trigger and OrderProcFunc

for the queue trigger. First, let’s implement OrderHttpApi. This function

Chapter 7 Serverless Microservices

163

listens to HTTP POST from clients. Once you receive HTTP POST data, you

parse the request body to be sent to Azure Storage Queue. You declare your

Azure Storage Queue libraries as follows:

using Microsoft.Azure.Storage; // �Namespace for

CloudStorageAccount

using Microsoft.Azure.Storage.Queue; // �Namespace for Queue

storage types

Then, you set Anonymous for the authorization level so you can

receive all HTTP POST requests without performing authentication

and authorization. After receiving the HTTP POST data, you send it to

Azure Storage Queue using the CloudQueue object with the order-queue

name. You call AddMessage() by passing the CloudQueueMessage object.

A configuration string for Azure Storage Queue is obtained from the

storage_queue configuration parameter. You will set it while deploying the

project. You can configure it in the Azure Functions dashboard.

The following is the complete code for OrderHttpApi:

public static class OrderHttpApi

{

 [FunctionName("OrderHttpApi")]

 public static async Task<IActionResult> Run(

 �[HttpTrigger(AuthorizationLevel.Anonymous, "post",

Route = null)] HttpRequest req,

 ILogger log)

 {

 �log.LogInformation("C# HTTP trigger function processed

a request.");

 �string requestBody = await new StreamReader(req.Body).

ReadToEndAsync();

 if(!string.IsNullOrEmpty(requestBody))

 {

Chapter 7 Serverless Microservices

164

 �string storageConnection = Environment.

GetEnvironmentVariable("storage_queue");

 �CloudStorageAccount storageAccount =

CloudStorageAccount.Parse(storageConnection);

 �CloudQueueClient qc = storageAccount.

CreateCloudQueueClient();

 �CloudQueue queue = qc.GetQueueReference("order-

queue");

 queue.CreateIfNotExists();

 �CloudQueueMessage message = new CloudQueueMessage

(requestBody);

 queue.AddMessage(message);

 �return (ActionResult)new OkObjectResult($"Succeed");

 }

 else

 �return new BadRequestObjectResult("Please order

data in the request body");

 }

}

Now you’ll implement the OrderProcFunc function. At first, you

declare the following:

using Newtonsoft.Json;

using System.Configuration;

You will listen for incoming queue messages on the order-queue

queue. Once you receive a message, you can validate it by deserializing

with the DeserializeObject<> method. The result of the deserialization

process is the FuncOrder object. You insert this object into Azure SQL

Database using the AzureSQLDB object that you already created.

Chapter 7 Serverless Microservices

165

The following is the complete code for OrderProcFunc:

public static class OrderProcFunc

{

 [FunctionName("OrderProcFunc")]

 �public static void Run([QueueTrigger("order-queue",

Connection = "storage_queue")]string queueItem, ILogger log)

 {

 �log.LogInformation($"C# Queue trigger function

processed: {queueItem}");

 if (queueItem.Length > 0)

 {

 // save into database

 �FuncOrder order = JsonConvert.DeserializeObject<Fun

cOrder>(queueItem);

 if (AzureSQLDB.InsertNewOrder(order))

 �log.LogInformation($"Data was saved into Azure

SQL Database");

 else

 �log.LogInformation($"There was error to save

data into Azure SQL Database");

 }

 else

 {

 �log.LogInformation($"No data was saved into Azure

SQL Database");

 }

 }

}

Chapter 7 Serverless Microservices

166

A connection string for Azure SQL Database is obtained from the

azure_sql setting. You can define the azure_sql setting when publishing

Azure Functions to Microsoft Azure. Now you can compile your Azure

Functions project. Make sure you don’t obtain errors while compiling the

project.

So, you have developed Azure Functions using Visual Studio. Next, you

will publish them.

�Publishing Azure Functions
Publishing Azure Functions projects with Visual Studio is easy. Right-click

the Azure Functions project and then select the Publish menu. You can

publish your project by logging in with your existing Azure account or

import the Azure Functions profile file from Azure Functions.

After selecting the Azure profile for Azure Functions, you obtain the

publishing settings. Next, you also configure a connection string for Azure

Storage Queue and Azure SQL Database.

You should define the azure_sql setting on your project. You can get a

database connection string from Azure SQL Database. Copy a connection

string from Azure SQL Database. Click the Edit Azure App service setting

menu in Figure 7-5.

Chapter 7 Serverless Microservices

167

You set a connection string for Azure Storage named storage_queue

(Figure 7-5), which you can get from the “Access keys” age in Azure

Storage, as shown in Figure 7-6. You can copy and paste it on

storage_queue (Figure 7-5). When you’re done, click the OK button to

save these publishing settings.

Figure 7-5.  Publish settings in Azure Functions project

Chapter 7 Serverless Microservices

168

After you publish, you can see your functions in the Azure Functions

dashboard, as shown in Figure 7-7. Next, you will test your Azure Functions

project.

Figure 7-6.  Getting a connection string from Azure Storage Queue

Chapter 7 Serverless Microservices

169

�Testing the OrderHttpApi Function
You can test your OrderHttpApi function using the web tool from Azure.

Open your OrderHttpApi function in the Azure Functions dashboard.

Click the Test tab so you can see the test tool, as shown in Figure 7-8. For

your demo, you can send some dummy order data in JSON format. You

can write this JSON data in the request body.

{

 "productname":"product A",

 "price": 2.55,

 "quantity": 3,

 "buyer":"jane"

}

Figure 7-7.  Two deployed functions

Chapter 7 Serverless Microservices

170

You can click the Run button to execute this tool. Technically, you

will see verbose messages during testing in the Logs window, as shown

in Figure 7-8. You also can see the response messages from the Azure

Functions server in the Logs window.

Figure 7-8.  Testing Azure Functions using the Azure Functions web tool

After sending data to the OrderHttpApi function, you can verify your

data in Azure SQL Database. Open your database in Azure SQL Database.

Then, perform a SQL query to see your data. You should see your data that

was sent from the web test tool. Figure 7-9 shows the result data in Azure

SQL Database.

Chapter 7 Serverless Microservices

171

Next, you will test the OrderProcFunc function.

�Sending Orders to Azure Storage Queue
You have tested your project by sending orders to HTTP POST. The

OrderHttpApi function performed those orders. Now you can test the

process of sending orders via Azure Storage Queue directly.

For demo purposes, build a .NET Core console application to send

orders to Azure Storage Queue. After creating the .NET Core console

project, add the Microsoft.Azure.Storage.Queue library into the project

using NuGet.

Figure 7-9.  Displaying FuncOrder data using the query editor in
Azure SQL Database

Chapter 7 Serverless Microservices

172

Next, you declare all the required libraries in your program, as shown

here:

using System;

using Microsoft.Azure.Storage; // �Namespace for

CloudStorageAccount

using Microsoft.Azure.Storage.Queue; // �Namespace for Queue

storage types

Now you’ll write the program to send an order. Define your order data

in JSON format. You can write this code:

class Program

{

 static void Main(string[] args)

 {

 string order = @"

 {

 'productname':'product ABC',

 'price': 2.55,

 'quantity': 3,

 'buyer':'zahra'

 }

 ";

Open Azure Storage Queue using the CloudStorageAccount object

and passing its connection string. You can get a connection string from the

Azure Storage dashboard. You can see a sample of a connection string in

Figure 7-6.

Chapter 7 Serverless Microservices

173

After connecting to Azure Storage, open Azure Storage Queue

using CloudQueueClient and set your queue name to order-queue.

Call CreateIfNotExists() to create the order-queue queue if it is not

available. The following is the sample code:

 �string storageConnection = "<connection string-azure

storage queue>";

 �CloudStorageAccount storageAccount =

CloudStorageAccount.Parse(storageConnection);

 �Console.Write("Connnectting to Azure Storage

Queue.....");

 �CloudQueueClient qc = storageAccount.

CreateCloudQueueClient();

 CloudQueue queue = qc.GetQueueReference("order-queue");

 Console.WriteLine("Connnected to Azure Storage Queue.");

 Console.WriteLine("Sending data....");

 queue.CreateIfNotExists();

You’ll send order messages using the CloudQueueMessage object. Call

the AddMessage() method to insert the messages into the queue.

 CloudQueueMessage message = new CloudQueueMessage(order);

 queue.AddMessage(message);

 Console.WriteLine("Data was sent to Azure Storage Queue");

 Console.ReadLine();

Save your project. Compile and run the project. Figure 7-10 shows

some program output from your project.

Chapter 7 Serverless Microservices

174

Figure 7-10.  Executing the .NET console application to send orders

You can verify your order by opening Azure SQL Database. Then, you

can perform a query to display the FuncOrder table. Figure 7-11 shows

your order data.

Figure 7-11.  A result of the query to display the FuncOrder table

Chapter 7 Serverless Microservices

175

�Summary
In this chapter, we reviewed what microservices are. You also learned how

to build a simple microservice with Azure. Various Azure resources were

integrated into your project. In the next chapter, you will focus on how to

build IoT telemetry by applying Azure Functions projects.

Chapter 7 Serverless Microservices

177© Agus Kurniawan, Wely Lau 2019
A. Kurniawan and W. Lau, Practical Azure Functions,
https://doi.org/10.1007/978-1-4842-5067-9_8

CHAPTER 8

IoT Telemetry System
Developers can use the Internet of Things (IoT) to expand their business.

There are various ways to use the IoT with your existing applications.

Specifically, you can use Azure Functions to monitor and automate IoT

devices. In this chapter, you’ll explore how to work with the IoT platform

and Azure Functions.

The following topics are covered in this chapter:

•	 Introduction to the IoT telemetry system

•	 How to integrate IoT telemetry and Azure Functions

•	 How to build Azure Functions projects for the IoT

�Introducing the IoT Telemetry System
Nowadays, IoT technology drives various industry sectors. There are many

platforms for developing IoT applications today such as the Raspberry Pi,

Arduino, Beaglebone, and ESP32. You can monitor using IoT devices in

some places such as temperature, humidity, and air quality, and obtain

real-time data from those devices.

Figure 8-1 shows a general model of an IoT device. There are four

components in an IoT device: the microcontroller unit (MCU), sensor,

actuator, and network. The MCU is responsible for controlling all I/O

processing in the IoT system. The sensor is used to detect physical objects

such as temperature and humidity and convert them in digital forms. The

178

actuator is applied if you want to perform actions such as turning on LEDs

and motors. The network module is used to communicate with other

systems, for instance, WiFi and Bluetooth.

The IoT telemetry system is one of the IoT systems that senses physical

objects or actuates something and then sends the data to a particular

server. Most IoT telemetry systems can send massive amounts of data to

servers. This system uses various network stacks to exchange data between

IoT devices and servers.

In this chapter, you’ll explore how to access Azure Functions from the

IoT telemetry system.

�Integrating IoT Telemetry and Azure
Functions
Microsoft provides an Azure solution to enable you to work with various

platforms including the IoT. To communicate with Microsoft Azure, you

can apply Azure IoT Hub to retrieve data from IoT devices. Azure IoT Hub

provides scalable features in order to serve massive data from IoT devices.

Azure IoT Hub can manage and monitor your IoT devices. You can find

the details of Azure IoT Hub at https://azure.microsoft.com/en-us/

services/iot-hub/.

Actuator Sensor

MCU

Netw
ork

Figure 8-1.  A basic model of an Internet of Thing device

Chapter 8 IoT Telemetry System

https://azure.microsoft.com/en-us/services/iot-hub/
https://azure.microsoft.com/en-us/services/iot-hub/

179

IoT devices can communicate with the Azure back end through Azure

IoT Hub with various standard protocols. The following is a list of the

supported protocols on Azure IoT Hub:

•	 HTTPS

•	 AMQP

•	 AMQP over WebSockets

•	 MQTT

•	 MQTT over WebSockets

Azure Functions can be applied on Azure IoT Hub to listen for

incoming data from IoT devices and perform data processing. You can use

any program to access Azure Functions. For instance, you can store sensor

data in Azure SQL Database, as shown in Figure 8-2.

Figure 8-2.  A sample of an integration scenario between IoT devices
on the Azure platform

You can extend your Azure features in your local environment with

Azure IoT Edge. You can configure Azure IoT Edge as a gateway device for

all your IoT devices. You can deploy your business logic program inside

IoT Edge. A benefit of deploying workloads to Azure IoT Edge is that your

IoT devices spend less time communicating with the cloud, and these

devices even work during certain offline periods.

Chapter 8 IoT Telemetry System

180

For further information about Azure IoT Edge, you can visit the official

web site at https://azure.microsoft.com/en-in/services/iot-edge/.

�IoT Telemetry Data Processing
In this section, you’ll learn how to develop IoT telemetry data processing.

You can use Azure Functions to perform sensor data processing. All IoT

device requests will be handled by Azure IoT Hub. Figure 8-3 shows the

demo scenario. All the IoT devices will send sensor data to the Microsoft

Azure server through Azure IoT Hub. You’ll also prepare Azure Functions

to listen for incoming message on Azure IoT Hub. Once Azure Functions

receives data, Azure Functions will store that data into Azure SQL

Database.

Figure 8-3.  A demo scenario for IoT devices and Azure Functions

To implement the demo, you should have an active account on

Microsoft Azure. Some Azure resources probably will cost money.

Next, you’ll create an Azure SQL Database instance.

�Creating an Azure SQL Database Instance
Azure SQL Database is one of the Azure services that helps you manage

and process your data. If you have experience with SQL Server, you will

see that you can get the same functionality with Azure SQL Database. You

can work with Azure SQL Database without worrying about infrastructure

Chapter 8 IoT Telemetry System

https://azure.microsoft.com/en-in/services/iot-edge/

181

resources. You can learn more at https://azure.microsoft.com/en-us/

services/sql-database/.

You can start by creating a database instance with Azure SQL

Database. We’ll use a small database size for our demo. You can also use

an existing Azure SQL Database instance if you have one created.

Figure 8-4 shows the Azure SQL Database dashboard. You can see a server

called funcsql and a database called azurefuncdb, as shown in Figure 8-4.

Figure 8-4.  The Azure SQL Database dashboard

Next, let’s create a table for demo purposes using SQL scripting. You’ll

store two sensor data items: temperature and humidity. The table will be

called Sensor and will have five columns, as follows.

•	 id is the primary key of the Sensor table.

•	 deviceid is the device ID from the IoT device.

•	 temperature is the sensor data for temperature.

Chapter 8 IoT Telemetry System

https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/

182

•	 humidity is the sensor data for humidity.

•	 posted is the date of the received data.

You can create the Sensor table using the following SQL:

CREATE TABLE [dbo].[Sensor](

 [id] [int] IDENTITY(1,1) NOT NULL,

 [deviceid] [varchar](15) NOT NULL,

 [temperature] [int] NOT NULL,

 [humidity] [int] NOT NULL,

 [posted] [datetime] NOT NULL,

 CONSTRAINT [PK_Sensor] PRIMARY KEY CLUSTERED

(

 [id] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_

DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON

[PRIMARY]

) ON [PRIMARY]

GO

You can run these scripts in the query editor from the database

dashboard in Azure SQL Database. After executing SQL scripts, you can

check the table using the query editor, as shown in Figure 8-5. You should

see the Sensor table in your database.

Chapter 8 IoT Telemetry System

183

Next, you can set up Azure IoT Hub as a bridge between the IoT

devices and Microsoft Azure.

�Setting Up Azure IoT Hub
Azure IoT Hub is used as a service interface between IoT devices and

Microsoft Azure servers. You can use a browser to start setting up Azure

IoT Hub by going to https://portal.azure.com/.

After selecting the Azure IoT Hub template, you will get a creation

form, as shown in Figure 8-6. Fill in all the required fields on this form.

Click the “Review + create” button to create a hub with Azure IoT Hub.

Figure 8-5.  Sensor table created in Azure SQL Database

Chapter 8 IoT Telemetry System

https://portal.azure.com/

184

Next, you can create IoT devices on Azure IoT Hub to enable you to

communicate with Microsoft Azure. Open your Azure IoT Hub dashboard.

Then, open the IoT devices menu on Azure IoT Hub. When you select

to create a new IoT device, you will obtain a creation form, as shown in

Figure 8-7.

Figure 8-6.  Creating a hub with Azure IoT Hub

Chapter 8 IoT Telemetry System

185

Fill in all the required fields on the form. Select “Symmetric key” for the

authentication type. Select the “Auto-generate keys” box. Make sure you

enable this device to connect to Azure IoT Hub. When you’re done, click

the Save button.

After you create an IoT device on Azure IoT Hub, you will see a list of

your IoT devices. You can create more IoT devices, but you will probably

be charged for additional IoT devices. See Figure 8-8.

Figure 8-7.  Creating an IoT device on Azure IoT Hub

Chapter 8 IoT Telemetry System

186

Next, you’ll build an Azure Functions project to listen for incoming

data on Azure IoT Hub.

�Creating an Azure Functions Project for the IoT
You can develop an Azure Functions program using the Azure web editor

and Visual Studio. You also can create functions in Azure Functions with

Azure CLI. In this section, you’ll develop functions using Visual Studio 2019.

Start creating an Azure Functions project by selecting the Azure Functions

template. Then select the IoT Hub trigger. Figure 8-9 shows the project

template for Azure Functions. You can set up a storage account for your project

and set up a trigger path with message/iotsensor. Fill in the project name, for

instance, IoTFunctions. After filling in all the project fields, click the OK button.

You will get some code for your Azure Functions project. Before writing

any additional code, you need to add the prerequisite libraries. Add the

System.Data.SqlClient and Newtonsoft.Json libraries to your project

through NuGet.

Figure 8-8.  A list of IoT devices on Azure IoT Hub

Chapter 8 IoT Telemetry System

187

The program scenario is to listen for the IoT Hub trigger on the

messages/iotsensor path. You will receive a message from IoT devices in

the JSON format with the following format:

{

 "deviceid": "<deviceid>",

 "temperature":"<temperature>",

 "humidity":"<humidity>"

}

You encode this JSON message and convert as a Sensor object via the

deserialization process by calling the JsonConvert.DeserializeObject()

method. This method is part of the Newtonsoft.Json library. After you

obtain the Sensor object, Azure Functions will store it in Azure SQL

Database.

Figure 8-9.  Creating Azure Functions functions with an IoT Hub trigger

Chapter 8 IoT Telemetry System

188

The Sensor object holds the device ID and sensor data such as the

temperature and humidity. You can define the Sensor object in the

Sensor.cs file. The following is the Sensor object implementation:

using System;

using System.Collections.Generic;

using System.Text;

namespace IoTFunctions

{

 public class Sensor

 {

 public string DeviceId { set; get; }

 public int Temperature { set; get; }

 public int Humidity { set; get; }

 }

}

You can store the Sensor object in Azure SQL Database. Define your

own database object, called AzureSQLDB, and call the InsertSensor()

method to store the data in the database on Azure SQL Database.

The following is the Azure Functions code implementation:

[FunctionName("IoTHubData")]

public static void Run([IoTHubTrigger("messages/iotsensor",

Connection = "IoTHubTriggerConnection")]EventData message,

ILogger log)

{

 �log.LogInformation($"C# IoT Hub trigger function processed

a message: {Encoding.UTF8.GetString(message.Body.Array)}");

 if (message.Body.Array.Length > 0)

 {

 // save into database

 var json = Encoding.UTF8.GetString(message.Body);

Chapter 8 IoT Telemetry System

189

 �Sensor sensor = JsonConvert.DeserializeObject<Sensor>(json);

 AzureSQLDB.InsertSensor(sensor);

 }

}

The AzureSQLDB object applies ADO.NET objects to manipulate data for

SQL Server. You define the InsertSensor() method to store data into Azure

SQL Database. You can use the SQLCommand object to execute the INSERT

query to store the database by calling the ExecuteNonQuery() method.

public static bool InsertSensor(Sensor sensor)

{

 string db = Environment.GetEnvironmentVariable("azure_sql");

 try

 {

 using (SqlConnection conn = new SqlConnection(db))

 {

 conn.Open();

 �var text = "INSERT INTO [Sensor](deviceid,temperatu

re,humidity,posted) " +

 "VALUES(@deviceid,@temperature,@humidity,getdate())";

 using (SqlCommand cmd = new SqlCommand(text, conn))

 {

 �cmd.Parameters.Add(new SqlParameter

("@deviceid", sensor.DeviceId));

 �cmd.Parameters.Add(new SqlParameter

("@temperature", sensor.Temperature));

 �cmd.Parameters.Add(new SqlParameter

("@humidity", sensor.Humidity));

Chapter 8 IoT Telemetry System

190

 cmd.ExecuteNonQuery();

 }

 }

 }

 catch (Exception)

 {

 return false;

 }

 return true;

}

You can obtain a connection string for Azure SQL Database from

the azure_sql setting. You also pass IoTHubTriggerConnection as

the endpoint connection string for Azure IoT Hub. You can define the

azure_sql and IoTHubTriggerConnection settings when publishing Azure

Functions to Microsoft Azure.

You can also configure the project settings in the local.settings.json file.

Define the azure_sql and IoTHubTriggerConnection settings, as shown here:

{

 "IsEncrypted": false,

 "Values": {

 "IoTHubTriggerConnection": "<INSERT_ENDPOINT_IOT_HUB>",

 "AzureWebJobsStorage": "<INSERT_AZURE_STORAGE",

 "FUNCTIONS_WORKER_RUNTIME": "dotnet"

 }

}

You have developed an Azure Functions project using Visual Studio.

Next, you will publish the Azure Functions project.

Chapter 8 IoT Telemetry System

191

�Publishing an Azure Functions Project
Publishing an Azure Functions project with Visual Studio is easy.

Right-click the Azure Functions project and then select the Publish menu.

You can publish your project by logging in with your existing Azure account

or importing the Azure Functions profile file from Azure Functions.

On the publishing form on Visual Studio, you should configure a

connection string for IoT Hub, as shown in Figure 8-10. This connection

string consists of endpoint settings from Azure IoT Hub. Fill in your IoT Hub

endpoint for the IoTHubTriggerConnection value, as shown in Figure 8-10.

You can obtain the Azure IoT Hub endpoint from the Azure IoT Hub

dashboard. You can open the built-in endpoints menu, as shown in

Figure 8-11. Copy the value of the Event Hub – Compatible endpoint into

IoTHubTriggerConnection from Figure 8-10.

Figure 8-10.  Configuring an IoT Hub trigger connection

Chapter 8 IoT Telemetry System

192

Figure 8-11.  Getting an Azure IoT Hub endpoint

Next, you can configure a connection string for Azure SQL Database.

You already defined the azure_sql setting for your project. You can get

the database connection string from Azure SQL Database. Copy the

connection string and then paste it into azure_sql in the remote section,

as shown in Figure 8-12. When you’re done, click the OK button to save

these publishing settings.

After you’ve saved these settings, you can see your function show up in

the Azure Functions dashboard. Next, you will test your function.

Chapter 8 IoT Telemetry System

193

�Testing Your Azure Functions Projects
Azure Functions provides testing tools through the Azure web tool. You

can open your Azure Functions projects in the Azure Functions dashboard.

Click the Test tab so you can see the testing tools, as shown in Figure 8-13.

For this demo, you’re sending sensor dummy data in JSON format. You can

write this JSON data on the request body:

{

 "deviceid": "simulated dev",

 "temperature":"123",

 "humidity":"12"

}

Figure 8-12.  Configuring a database connection for Azure SQL
Database

Chapter 8 IoT Telemetry System

194

You can click the Run button to execute this tool. Technically, you

will see verbose messages during testing in the Logs window, as shown in

Figure 8-13. You also can see response messages from the Azure Functions

server in the Logs window.

Figure 8-13.  Testing Azure Functions from the Azure Functions
web tool

After sending data to Azure Functions, you can verify your data. Open

your database in Azure SQL Database. Then, perform a SQL query to see

your data. You should see your data that was sent from the web test tool.

Figure 8-14 shows your result data in Azure SQL Database.

Chapter 8 IoT Telemetry System

195

Next, you will develop an IoT program to access Azure Functions.

�Developing an IoT Program
You have developed an Azure Functions program and already uploaded it

to Microsoft Azure. You also tested the Azure Functions program using the

web test tool from Azure Functions. Now you’ll develop a program for the

IoT platform.

Microsoft has provided SDK libraries for IoT platforms. Currently,

Azure IoT SDK libraries are available as follows:

•	 Azure IoT SDK for C, https://github.com/Azure/

azure-iot-sdk-c

•	 Azure IoT SDK for Python, https://github.com/

Azure/azure-iot-sdk-python

Figure 8-14.  Displaying sensor data using the query editor in Azure
SQL Database

Chapter 8 IoT Telemetry System

https://github.com/Azure/azure-iot-sdk-c
https://github.com/Azure/azure-iot-sdk-c
https://github.com/Azure/azure-iot-sdk-python
https://github.com/Azure/azure-iot-sdk-python

196

•	 Azure IoT SDK for Node.js, https://github.com/

Azure/azure-iot-sdk-node

•	 Azure IoT SDK for .NET, https://github.com/Azure/

azure-iot-sdk-csharp

•	 Azure IoT SDK for Java, https://github.com/Azure/

azure-iot-sdk-java

You can check your IoT devices to see whether these SDK

libraries have support for your IoT platform at https://catalog.

azureiotsolutions.com/alldevices.

For this demo, we’ll show how to develop an IoT program using .NET

Core. This program can run on an IoT platform with Windows and Linux.

For this simple scenario, you’ll send random sensor data to Azure IoT

Hub. Since this program uses .NET Core, this program can run on your

computer for testing purposes.

First, your IoT device or computer needs .NET Core installed on it for

testing. If you haven’t installed it yet, you can download and install .NET

Core at https://dotnet.microsoft.com/download.

You can creating the .NET Core program using the dotnet command.

Type this command on your terminal:

$ dotnet new console -o SimulatedIoT

$ cd SimulatedIoT/

Then, you’ll add the Azure IoT SDK for .NET to your project. Type

these commands:

$ dotnet add package Microsoft.Azure.Devices.Client --version

1.20.1

$ dotnet restore

Now you can write your program. You’ll write the code in a Program.cs file.

Chapter 8 IoT Telemetry System

https://github.com/Azure/azure-iot-sdk-node
https://github.com/Azure/azure-iot-sdk-node
https://github.com/Azure/azure-iot-sdk-csharp
https://github.com/Azure/azure-iot-sdk-csharp
https://github.com/Azure/azure-iot-sdk-java
https://github.com/Azure/azure-iot-sdk-java
https://catalog.azureiotsolutions.com/alldevices
https://catalog.azureiotsolutions.com/alldevices
https://dotnet.microsoft.com/download

197

First, declare all the required libraries in your project. You can include

the Azure IoT SDK in your program.

using System;

using Microsoft.Azure.Devices.Client;

using Newtonsoft.Json;

using System.Text;

using System.Threading.Tasks;

You can define a connection string for IoT Hub and the DeviceClient

object. Put your connection string for your registered IoT device in Azure

IoT Hub. You already registered your IoT device in the “{You device

connection string here}” section.

class Program

{

 private static DeviceClient deviceClient;

 �private readonly static string connectionString =

"{Your device connection string here}";

Open your IoT device in Azure IoT Hub. Then, copy the connection

string value from IoT Hub, as shown in Figure 8-15.

Chapter 8 IoT Telemetry System

198

Next, create the SendDeviceToCloudMessagesAsync() method to

perform a loop for sending messages to Azure IoT Hub. You can generate

random values for temperature and humidity.

 private static async void SendDeviceToCloudMessagesAsync()

 {

 // Initial telemetry values

 double minTemperature = 20;

 double minHumidity = 60;

 Random rand = new Random();

 while (true)

 {

Figure 8-15.  Getting a connection string from an IoT device

Chapter 8 IoT Telemetry System

199

 �int currentTemperature = Convert.ToInt32

(minTemperature + rand.NextDouble() * 15);

 �int currentHumidity = Convert.

ToInt32(minHumidity + rand.NextDouble() * 20);

Now construct the sensor data in JSON format. Then, perform

serialization for JSON objects using the JsonConvert.SerializeObject()

method. To send messages to Azure IoT Hub, you can call the

SendEventAsync() method from the DeviceClient object.

var sensor = new

{

 DeviceId = "simulatedIoT",

 Temperature = currentTemperature,

 Humidity = currentHumidity

};

var messageString = JsonConvert.SerializeObject(sensor);

var message = new Message(Encoding.ASCII.

GetBytes(messageString));

await deviceClient.SendEventAsync(message);

Console.WriteLine("{0} > Sending message: {1}", DateTime.Now,

messageString);

await Task.Delay(15000);

Now instantiate the DeviceClient object by calling the

CreateFromConnectionString() method and passing the device

connection string. You can also set MQTT as the protocol.

private static void Main(string[] args)

{

 �Console.WriteLine("Simulated device is running. Ctrl-C to

exit.\n");

Chapter 8 IoT Telemetry System

200

 �deviceClient = DeviceClient.CreateFromConnectionString

(connectionString, TransportType.Mqtt);

 SendDeviceToCloudMessagesAsync();

 Console.ReadLine();

}

Save this program. Now you can run this program by typing this

command:

$ dotnet run

This program will send messages to Azure IoT Hub. Figure 8-16 shows

some program output.

Figure 8-16.  A sample of the program output from a simulated IoT
device

You can verify your sent messages in Azure SQL Database using the

query editor tool, as shown in Figure 8-17.

Chapter 8 IoT Telemetry System

201

�IoT Telemetry with the Arduino MKR1000
We have shown you how to test your IoT Hub and Azure Functions

program using a simulated IoT device. Now we’ll show you how to test your

program using an Arduino board. Not all Arduino modules can be used to

connect to Microsoft Azure. One of the Arduino boards that works is the

Arduino MKR1000. This board has already been tested for Microsoft Azure.

The Arduino MKR10000 board can connect a network through a WiFi

module and also works with an SSL network. The Arduino MKR10000

board consists of the ATSAMW25 module with the SAMD21 Cortex-M0+,

WINC1500 WiFi, and ECC508 CryptoAuthentication modules. For further

information about the Arduino MKR10000 board, you can visit the official

web site at https://store.arduino.cc/arduino-mkr1000.

To simulate sensor data, you can use the DHT22 sensor module that

consists of the temperature and humidity sensors. You can find this sensor

module easily in your local electronics store. Figure 8-18 shows the DHT22

sensor module’s pin layout. The DHT22 sensor module can work with 3.3V

and 5V voltages.

Figure 8-17.  Verifying data in Azure SQL Database

Chapter 8 IoT Telemetry System

https://store.arduino.cc/arduino-mkr1000

202

Next, you will perform the hardware wiring for the demo.

�Hardware Wiring
In this section, you’ll perform the hardware wiring before you develop a

program for Arduino. You can connect DHT22 to the Arduino MKR1000

with the following wiring:

•	 The DHT VCC pin is connected to the Arduino

MKR1000 VCC pin.

•	 The DHT GND pin is connected to the Arduino

MKR1000 GND pin.

•	 The DHT Data pin is connected to the Arduino

MKR1000 digital D7 pin.

Figure 8-18.  DHT22 pin layout

Chapter 8 IoT Telemetry System

203

You can see this hardware wiring in Figure 8-19.

Next, you will see how to develop a sketch program using the

Arduino software.

�Installing and Configuring the Arduino Software
You can build a sketch program using Arduino. We recommend you use

the latest version of the Arduino software. You can download this software

at http://arduino.cc/en/Main/Software. This tool is available for the

Windows, macOS, and Linux platforms.

Figure 8-19.  Wiring for the Arduino MKR1000 and DHT22

Chapter 8 IoT Telemetry System

http://arduino.cc/en/Main/Software

204

After installing the Arduino software, you need to install the Arduino

SAMD boards by Arduino to enable to work with the Arduino MKR1000.

You can install it by selecting Tools ➤ Board ➤ Boards Manager. After

clicking this menu, you should see a Boards Manager dialog. Search for

Arduino SAMD Boards by Arduino. Install these boards. After they’re

installed, you should see your Arduino MKR1000 in the Arduino board list.

To perform this task, your computer should be connected to the Internet.

You also should install some libraries to enable you to work with

DHT22 and Azure IoT Hub. You can install these libraries via the Manage

Libraries dialog. You can open this dialog by clicking Sketch ➤ Include

Library ➤ Manage Libraries. In the dialog, search for and install the

following libraries:

•	 WiFi101

•	 RTCZero

•	 AzureIoT

•	 DHT Sensor Library

•	 Adafruit Unified Sensor Lib

Your computer should be connected to the Internet so you can

download and install these libraries.

Next, you’ll develop a sketch program using the Arduino software.

�Writing a Sketch Program
In this section, you’ll learn how to develop a program for the Arduino

MKR1000. This program will perform sensing through the DHT22 sensor

module to obtain the current temperature and humidity. Then, you’ll send

this sensor data to Azure IoT Hub.

Chapter 8 IoT Telemetry System

205

Create a new sketch program and name the project name

ArduinoAzureIoT.ino. You’ll also use the ArduinoAzureIoT.c and

ArduinoAzureIoT.h files to manage Azure IoT Hub. First you’ll work on the

ArduinoAzureIoT.ino file.

You can declare your required libraries and set the SSID name and

SSID key to connect to the existing WiFi. Change these values in your WiFi

settings:

#include "DHT.h"

#include <WiFi101.h>

#include "ArduinoAzureIoT.h"

#define DHTPIN 7 // Digital pin D7 connected to the DHT sensor

char ssid[] = "[wifi-ssid]"; // your network SSID (name)

char pass[] = "[wifi-ssid key]"; // �your network password (use

for WPA, or use as key for WEP)

int status = WL_IDLE_STATUS;

You can also configure the Serial object with a baud rate of 9600 and

configure the DHT object with the DHT22 model type data pin on the D7

digital pin.

#define DHTTYPE DHT22 // DHT 22 (AM2302), AM2321

DHT dht(DHTPIN, DHTTYPE);

void setup() {

 Serial.begin(9600);

 Serial.println(F("Azure IoT and DHT Demo"));

 // check for the presence of the shield :

 if (WiFi.status() == WL_NO_SHIELD) {

 Serial.println("WiFi shield not present");

 // don't continue:

 while (true);

 }

Chapter 8 IoT Telemetry System

206

 // attempt to connect to Wifi network:

 while (status != WL_CONNECTED) {

 Serial.print("Attempting to connect to SSID: ");

 Serial.println(ssid);

 �// Connect to WPA/WPA2 network. Change this line if using

open or WEP network:

 status = WiFi.begin(ssid, pass);

 if (status != WL_CONNECTED) {

 // wait 10 seconds for connection:

 delay(10000);

 }

 }

 Serial.println("Connected to wifi");

 dht.begin();

}

In the looping function, loop(), you can read the temperature and

humidity via the DHT22 module. Then, you send this data to Azure IoT

Hub by calling the azureiot_http_run() function that is declared on the

ArduinoAzureIoT.c and ArduinoAzureIoT.h files.

void loop() {

 delay(20000);

 int h = dht.readHumidity();

 int t = dht.readTemperature();

 if(h==0 || t==0) {

 Serial.println(F("Failed to read from DHT sensor!"));

 return;

 }

Chapter 8 IoT Telemetry System

207

 Serial.print(F("Humidity: "));

 Serial.print(h);

 Serial.print(F("% Temperature: "));

 Serial.print(t);

 Serial.println(F("°C "));

 Serial.println("Sending data to Azure IoT");

 azureiot_http_run(t,h);

}

You implement the azureiot_http_run() function on the

ArduinoAzureIoT.c and ArduinoAzureIoT.h files. These files are

a modified program sample from the Azure IoT libraries. In the

ArduinoAzureIoT.c file, you should change your connectionString value

to the connection string from your registered IoT device on Azure IoT Hub.

static const char* connectionString = "[device connection string]";

static int callbackCounter;

static int is_done;

Inside your azureiot_http_run() function, you construct sensor data

in JSON format. Then, you send it to Azure IoT Hub.

sprintf_s(msgText, sizeof(msgText), "{\"deviceId\": \"AR

DUINOMKR1000\",\"temperature\": %d,\"humidity\": %d}",

temperature,humidity);

if ((messages.messageHandle = IoTHubMessage_

CreateFromByteArray((const unsigned char*)msgText,

strlen(msgText))) == NULL)

{

 (void)printf("ERROR: iotHubMessageHandle is NULL!\r\n");

}

Chapter 8 IoT Telemetry System

208

You can see our complete program in Figure 8-20.

Next, you’ll learn how to configure an SSL certificate on the Arduino

MKR1000.

�Updating an SSL Certificate for Azure IoT Hub
Before you upload your program onto your Arduino MKR1000 board, you

should update and configure your SSL certificate from your Azure IoT Hub.

If not, you will get errors because of the SSL certification.

First upload the FirmwareUpdater program into the Arduino

MKR1000. You can get this program from the program samples by

selecting File ➤ Examples ➤ WiFi101 ➤ FirmwareUpdater. After uploading

the FirmwareUpdater program into the Arduino MKR1000, your board is

ready for the updated firmware for the WiFi module.

Figure 8-20.  Sketch program on the Arduino software

Chapter 8 IoT Telemetry System

209

You can update the WiFi firmware on the Arduino MKR1000 by clicking

Tools ➤ WiFi1011 / WiFiNINA Firmware/Certificate Updater. After clicking

the menu, you should get the dialog shown in Figure 8-21.

Select your Arduino MKR1000 port. Then, select the firmware version

you want. I recommend you choose the latest version of the firmware.

Then, add your Azure IoT Hub domain by clicking the “Add domain”

button. Fill in your Azure IoT Hub domain. You can get this information on

the Azure IoT Hub dashboard.

Click the “Upload Certification to WiFi module” button to update the

firmware and SSL certificate. Make sure you disconnect UART accesses on

the Arduino MKR1000.

After updating the firmware and the SSL certificate, you are ready to

upload your program and test it.

Figure 8-21.  Updating the firmware and configuring the SSL
certificate

Chapter 8 IoT Telemetry System

210

�Testing the Program
Now you can compile and upload the sketch program. You can perform

these tasks on the Arduino software by clicking the Verify and Upload

icons. After uploading the program, you can see the program output by

opening the Serial Monitor tool by clicking Tools ➤ Serial Monitor.

You should see your program output that sensed the temperature and

humidity from DHT22. Then, the program sends this sensor data to Azure

IoT Hub. You can see our program output in Figure 8-22.

You can verify your data was sent to Azure IoT Hub by opening

Azure SQL Database. You can perform a query to display all the data in

the Sensor table. Figure 8-23 shows the sensor data that was sent by the

Arduino MKR1000.

Figure 8-22.  Program output in the Serial tool

Chapter 8 IoT Telemetry System

211

�Summary
In this chapter, you learned how to access Azure Functions from

IoT devices. You also already have developed a simple project with

implementing Azure Functions, Azure IoT Hub, and Azure SQL Database.

In the next chapter, you will focus on how to work with Azure monitoring

and Application Insights.

Figure 8-23.  Verifying data on Azure SQL Database

Chapter 8 IoT Telemetry System

213© Agus Kurniawan, Wely Lau 2019
A. Kurniawan and W. Lau, Practical Azure Functions,
https://doi.org/10.1007/978-1-4842-5067-9_9

CHAPTER 9

Monitoring Azure
Functions with
Application Insights
Monitoring is an essential part of the software development lifecycle.

Without proper monitoring, it would be challenging to improve an

application by identifying bugs or increasing the performance. You can

monitor Azure Functions using Application Insights.

Since Application Insights is a big topic, we will not be able to cover

every single detail of it in this chapter. Rather, you will learn about

telemetry and how to monitor Azure Functions with Application Insights

in this chapter.

�Introduction to Application Insights
Application Insights, often called App Insights, is an application

performance monitoring (APM) solution that is part of the Azure platform.

Figure 9-1 illustrates how Application Insights works.

214

App Insights works by embedding a tiny instrumentation package in

your application.

App Insights supports various platforms and programming languages

(such as .NET, NodeJS, Java, PHP, etc.) through the official Application

Insights team support and through community support. For more details

about the platform support, please visit https://docs.microsoft.com/

en-us/azure/azure-monitor/app/platforms.

The App Insights package will periodically instrument your application

and ingest the telemetry data to the backend Application Insights

service. The Application Insights service will then perform the necessary

operations before displaying the reports to the dashboard. A typical report

includes the following:

•	 Request rates, response times, failure rates

•	 Exceptions and errors

•	 Page views and performance

•	 Diagnostic trace logs

Figure 9-1.  App Insights architecture

Chapter 9 Monitoring Azure Functions with Application Insights

https://docs.microsoft.com/en-us/azure/azure-monitor/app/platforms
https://docs.microsoft.com/en-us/azure/azure-monitor/app/platforms

215

You can learn more about the dashboard details at https://docs.

microsoft.com/en-us/azure/azure-monitor/app/app-insights-

overview#what-does-application-insights-monitor. Other advanced

reports such as smart detection and alerts leverage artificial intelligence

(AI) to alert when there is something outside of the usual pattern.

You learned about building a microservices architecture with

Azure Functions in Chapter 7. Related to this, App Insights is capable of

monitoring and instrumenting not just your app’s code but also some of

the external services that your app connects to. This capability is known

as distributed tracing. You can learn more about it at https://docs.

microsoft.com/en-us/azure/azure-monitor/app/distributed-tracing.

In addition to viewing the dashboard in the Azure portal, you can use

Power BI to connect to App Insights or export the data through the REST API.

Using an analogy, think of App Insights as an X-ray machine that will

help you diagnose what’s wrong in your body so that the doctor can cure

you accordingly. Similarly, you use App Insights to instrument your app.

When you find out what is causing the failure or performance issue, then

you can rectify it.

�Provisioning Application Insights
Let’s begin this section by provisioning an App Insights instance. To do

that, navigate to the Azure portal and click “+ Create a resource.” Choose

Application Insights in the Developer Tools category, as shown in Figure 9-2.

Chapter 9 Monitoring Azure Functions with Application Insights

https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview#what-does-application-insights-monitor
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview#what-does-application-insights-monitor
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview#what-does-application-insights-monitor
https://docs.microsoft.com/en-us/azure/azure-monitor/app/distributed-tracing
https://docs.microsoft.com/en-us/azure/azure-monitor/app/distributed-tracing

216

Like with other Azure services, you’ll need to choose your preferred

subscription and resource group in the project details. Provide the name

and choose your preferred region where your Azure Functions app is

located. In the example shown in Figure 9-3, the App Insights instance is

named AIForAzureFunctions. Then click “Review + create” to complete

the creation process.

Figure 9-2.  Creating an App Insights instance

Figure 9-3.  Naming the App Insights instance

Chapter 9 Monitoring Azure Functions with Application Insights

217

After a few moments, you will be able to see the Application Insights

Overview tab, as shown in Figure 9-4. The instrumentation key, as shown

in the main section, serves as an identifier so that the App Insights package

sends the telemetry information to the App Insights back-end service. On

the left side, you’ll see several menus that you can investigate and monitor

with App Insights. We will discuss some of them later in the chapter.

Figure 9-4.  Application Insights Overview tab

�Integrating Application Insights to Azure
Functions
There are a few ways to integrate App Insights into Azure Functions. If

you are creating a few Azure Functions apps, you will have the option to

also create an App Insights instance during provisioning, as we discussed

earlier.

What you’re going to do now is to integrate the App Insights instance

that you just created to Azure Functions. To do that, choose the Function

App menu in your Azure portal and then pick a function app (ideally

without an App Insights instance configured on it), as shown in Figure 9-5.

Chapter 9 Monitoring Azure Functions with Application Insights

218

You will see a warning message in the App Insights Overview blade

indicating “Application Insights is not configured. Configure Application

Insights to capture function logs” if the Azure function app does not have

any App Insights instance configured. Simply click that warning message

to launch the App Insights blade, as shown in Figure 9-6.

Figure 9-5.  Integrating App Insights to Azure Functions

Figure 9-6.  App Insights blade in the Azure portal

Chapter 9 Monitoring Azure Functions with Application Insights

219

The next step is to choose your preferred App Insights instance and

then click OK. Once the configuration has been successfully performed,

you will be able to see the Live Stream dashboard, as shown in Figure 9-7.

As you can see, there isn’t any request at all.

Figure 9-7.  Live Stream dashboard in App Insight

You are going to generate some load to verify whether the integration

has been successfully done. If your function is using the HTTP trigger, you

can simply invoke the URL using a browser or an event with a tool such as

Postman.

Navigate back to the Live Stream dashboard, and you should see that

the line chart is being updated in real time just like in Figure 9-8. This is

because of the traffic that you just generated.

Chapter 9 Monitoring Azure Functions with Application Insights

220

�Detecting Failures and Errors in Azure
Functions with App Insights
We all know that errors are inevitable in the software development world.

Unfortunately, because not all errors are reported by end users, the

administrator or application developer will not be able to fix them.

In this section, you will learn how App Insights can help application

developers discover failures and errors in Azure Functions.

�Simulating Failures in Azure Functions
In this section, you’ll develop a function to perform the division operation

of two parameters. You can add this function on an existing Visual Studio

project or create a new project. Listing 9-1 shows the function’s code.

Figure 9-8.  App Insights’ Live Stream dashboard with traffic

Chapter 9 Monitoring Azure Functions with Application Insights

221

Listing 9-1.  Code for Division Operation Function

using System;

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;

using Microsoft.AspNetCore.Http;

using Microsoft.Extensions.Logging;

using Newtonsoft.Json;

namespace PracticalAzureFunctionsCh9

{

 public static class Division

 {

 [FunctionName("Division")]

 public static async Task<IActionResult> Run(

 �[HttpTrigger(AuthorizationLevel.Anonymous, "get",

"post", Route = null)] HttpRequest req,

 ILogger log)

 {

 �log.LogInformation("C# HTTP trigger function

processed a request.");

 string a = req.Query["a"];

 string b = req.Query["b"];

 �string requestBody = await new StreamReader(req.

Body).ReadToEndAsync();

 �dynamic data = JsonConvert.DeserializeObject

(requestBody);

 a = a ?? data?.a;

 b = b ?? data?.b;

Chapter 9 Monitoring Azure Functions with Application Insights

222

 decimal result = 0;

 result = decimal.Parse(a) / decimal.Parse(b);

 string response = $"{a} / {b} = {result}";

 log.LogInformation(response);

 return (ActionResult)new OkObjectResult(response);

 }

 }

}

You may notice that the code in Listing 9-1 has not been properly

written. For example, there is no format validation to accept a number.

Another issue is the possibility of a division-by-zero exception.

Let’s deploy this function to a function app with App Insights.

Once the function has been deployed on Azure, let’s start to invoke the

function URL from the browser with the valid parameter’s value to make

sure that your function runs properly. To do that, pass parameter a with a

value of 5 and pass parameter b with a value of 2. As expected, you get a

response of 5 / 2 = 2.5, as displayed in Figure 9-9.

Figure 9-9.  Division operation with the valid parameter

This time you’ll generate a failure by passing in an invalid format.

To do that, let’s set the parameter a with the value of 8 and set b with a

value of x. As shown in Figure 9-10, you get an HTTP 500 error response.

Chapter 9 Monitoring Azure Functions with Application Insights

223

You are not done yet; let’s generate another error now by setting the

parameter a with the value 6 and set the parameter b with the value 0.

Similar to the previous step, you get another HTTP 500 error, as shown in

Figure 9-11.

Figure 9-10.  HTTP 500 error of format exception

Figure 9-11.  HTTP 500 error of division-by-zero exception

Chapter 9 Monitoring Azure Functions with Application Insights

224

�Viewing Failure Details in App Insights
Since you have already generated some failures, you will be viewing the

failure details in App Insights in this section. Typically, you will be able

to see data captured in the Live Stream dashboard almost in real time.

However, in other App Insights menus, typically you will be able to see the

data appear in less than five minutes.

Let’s navigate to the Azure portal. Under the App Insights menu, and

click Failures, as shown in Figure 9-12.

Figure 9-12.  Failures menu in App Insights

You can filter the time frame by changing the “Last 24 hours”

setting to your preferred time frame. You should notice that there’s

Division operation failures in the bottom section and the exception

types for the Division operation on the right side. Click the count for

DivideByZeroException to see the details. In our case, we have 2, but your

Chapter 9 Monitoring Azure Functions with Application Insights

225

case may differ. Immediately, you should see the failure incident’s details

such as date and time, as shown in Figure 9-13.

You can change the sort by date. Click one of the failure incident, and

you will see another blade, as shown in Figure 9-14.

Figure 9-13.  Failure incident details in App Insights

Chapter 9 Monitoring Azure Functions with Application Insights

226

This provides many more details of the failure incident including the

call stack if you scroll the right pane to the lower section. Now select the

“Just my code” box in the Call Stack section, and you will be able to see

your code. This is where App Insights is really amazing as it tells you which

code triggered the DivideByZeroException; here it’s at line 31, as shown

in Figure 9-15. One of the interesting things to note is that you can also

create a work item directly on this blade if your App Insights instance is

connected to Azure DevOps.

Figure 9-14.  End-to-end transaction details in App Insights’ Failures
menu

Chapter 9 Monitoring Azure Functions with Application Insights

227

Let’s check out line 31 in your function code to make sure that it

points to the right failure case. Figure 9-16 displays the screenshot of the

line 31; you can see we didn’t perform any validation of variable b before

performing the division operation.

Figure 9-15.  Exception details in App Insights

Chapter 9 Monitoring Azure Functions with Application Insights

228

�Load Testing, Autoscaling, and Real-Time
Monitoring
We will be showing an interesting scenario in this section to showcase the

combination of three technologies. You will be using an Azure DevOps

performance test to perform load testing against Azure Functions. You will

then monitor Azure Functions, especially the autoscaling behavior, in real

time with App Insights.

�Preparing Your Code
To demonstrate this scenario, let’s modify the code listing you used earlier.

To do that, right-click the Visual Studio project and select Add ➤ New

Azure Function, as shown in Figure 9-17.

Figure 9-16.  Code that results in a failure in the function

Chapter 9 Monitoring Azure Functions with Application Insights

229

Provide the name DivisionWithRandomDelayAndDefaultParameter.

Then add the code shown in Listing 9-2 to your Azure Functions project.

Listing 9-2.  Code for Division Operation Function with Random

Params and Errors

using System;

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;

using Microsoft.AspNetCore.Http;

using Microsoft.Extensions.Logging;

using Newtonsoft.Json;

using System.Threading;

Figure 9-17.  Adding a new function to the Visual Studio project

Chapter 9 Monitoring Azure Functions with Application Insights

230

namespace PracticalAzureFunctionsCh9

{

 �public static class DivisionWithRandomDelayAndDefault

Parameter

 {

 [FunctionName("DivisionWithRandomDelayAndDefaultParameter")]

 public static async Task<IActionResult> Run(

 �[HttpTrigger(AuthorizationLevel.Anonymous, "get",

"post", Route = null)] HttpRequest req,

 ILogger log)

 {

 �log.LogInformation("C# HTTP trigger function

processed a request.");

 string a = req.Query["a"];

 string b = req.Query["b"];

 �string requestBody = await new StreamReader

(req.Body).ReadToEndAsync();

 �dynamic data = JsonConvert.DeserializeObject

(requestBody);

 a = a ?? data?.a;

 b = b ?? data?.b;

 Random randParam = new Random();

 if (a == null)

 a = randParam.Next(25, 50).ToString();

 if (b == null)

 b = randParam.Next(0, 10).ToString();

 int sleepDelay = 0;

 Random randDelay = new Random();

 sleepDelay = randDelay.Next(0, 10);

Chapter 9 Monitoring Azure Functions with Application Insights

231

 Thread.Sleep(sleepDelay * 1000);

 decimal result = 0;

 result = decimal.Parse(a) / decimal.Parse(b);

 string response = $"{a} / {b} = {result}";

 log.LogInformation(response);

 return (ActionResult)new OkObjectResult(response);

 }

 }

}

You will notice that Listing 9-2 is actually a modified version of

Listing 9-1 where you set the value of parameters a and b when they not

defined in the query string.

The value of parameter a is filled with a random number between 25

and 49. The value of parameter b is filled with a random number between 0

to 9. This is done intentionally to simulate some cases of a DivisionByZero

exception. The listing also has a sleepDelay parameter with a random

value between 0 and 9 seconds. The reason for doing this is to generate

some delay with Thread.Sleep() so that you can see Azure Functions will

provision additional servers for you to handle the other requests.

�Publishing to Azure
You can build and publish the code to Azure. Once the code has been

successfully published to Azure, let’s verify it by simply accessing the

URL from a browser. If all goes well, you will see there might be a delay

in accessing the URL because of Thread.Sleep(), and you will see the

division operation for two values being shown. Obviously, you may see

different values from ours, as shown in Figure 9-18.

Chapter 9 Monitoring Azure Functions with Application Insights

232

Refresh your browser multiple times to simulate several requests. Now

navigate to App Insights and check out the Live Stream dashboard to verify

whether the requests you made were captured in App Insights.

�Generating the Load with Performance Testing
Moving on, in this section you’ll be generating a load for performance

testing with Azure DevOps. This can be done either through the Azure

portal, Azure DevOps, or even Visual Studio. Of course, you may

also choose to use your preferred load testing tools such as JMeter,

LoadRunner, Loader.IO, and so on. To streamline the experience, you will

be using the Azure portal from the App Insights menu.

Navigate to the Azure portal and look for the App Insights instance

that you created earlier in the chapter; then scroll down until you see

Performance Testing under the Configure section, as shown in Figure 9-19.

Figure 9-18.  Accessing division with default values and sleep

Chapter 9 Monitoring Azure Functions with Application Insights

233

When the Performance Testing blade opens, you will see the

performance testing history, as shown in Figure 9-20.

Figure 9-19.  Choosing Performance Testing in App Insights

Figure 9-20.  Performance testing history in the App Insights menu

You can choose to change the performance testing configuration with

another Azure DevOps account by clicking the Set Organization button.

Chapter 9 Monitoring Azure Functions with Application Insights

234

Or you can click the New button to trigger a new performance test.

Once the new performance test blade opens, you can start by choosing the

test type, as shown in Figure 9-21.

There are two types of test.

•	 Manual Test, which simply generates an HTTP request

to the URL specified

•	 Web Test, which is a more advanced mode allowing

you to record a scenario and upload it as a .webtest file

In this example, choose Manual Test and put the URL of your function

in the URL box. In this example, the URL is https://domain.azurewebsites.

net/api/DivisionWithRandomDelayAndDefaultParameter. Click Done to

return to the previous blade.

Give the performance test a name such as LoadTestingAzureFunction.

You can also choose the data center region where you want the load to be

generated from. Subsequently, fill in the user load, which simulates the

request. Finally, fill in the duration of the load test in minutes. Figure 9-22

displays the performance test details we specified (1,000 user loads over a

period of five minutes). Click “Run test” to complete it.

Figure 9-21.  New performance test

Chapter 9 Monitoring Azure Functions with Application Insights

https://domain.azurewebsites.net/api/DivisionWithRandomDelayAndDefaultParameter
https://domain.azurewebsites.net/api/DivisionWithRandomDelayAndDefaultParameter

235

The Azure portal will bring you back to the performance test history

blade, where you will see the state of the load testing initially in Queued.

You can click it to see the details of the performance test in another blade,

as shown in Figure 9-23.

Figure 9-22.  Adding details to generate the load test

Chapter 9 Monitoring Azure Functions with Application Insights

236

As you can tell from the information, Azure DevOps needs some time

to acquire the number of resources (load test agent) on the data center

region that you defined earlier. In addition to the parameters specified on

the load test, the waiting time depends on several factors, such as the data

center capacity.

�Monitoring the Live Stream Metric During
a Performance Test
In just a few moments, you can see that the performance test page turns to

In Progress: X %, which indicates that the performance test has started.

Let’s immediately open another browser or browser tab to browse to

App Insights and then the live stream metric. You can arrange the browser

windows side by side, as shown in Figure 9-24.

Figure 9-23.  Acquiring resources in the performance test

Chapter 9 Monitoring Azure Functions with Application Insights

237

The left side shows that the load test is being performed by Azure

DevOps through the App Insights menu. The right side shows the live

stream metric during the performance test. Notice the number of servers

online, which originally was only one instance before the performance

test and has now increased to 13. This proves the elasticity and autoscale

capabilities of Azure Functions during peak traffic.

Figure 9-25 shows another view after several minutes of running. In

fact, the number of servers has increased to 18 in this experiment.

Figure 9-24.  Side-by-side view: load testing and live stream metric

Chapter 9 Monitoring Azure Functions with Application Insights

238

The lower section on the left side displays the ongoing results of the

performance test, including the average response time. The lower section

on the right side shows the server’s name provisioned along with details

such as the number of requests, CPU, and memory consumed.

�Cooldown Period and Result of Performance Testing
After the five-minute performance test, Azure Functions will cool down

in approximately 15 minutes since there was not that much traffic. During

the cooldown period, Azure Functions will gradually scale the number of

instances to eventually just 1.

Let’s move back to the performance test summary page. Click “Request

details,” and you will see the request details summary, as shown in

Figure 9-26.

Figure 9-25.  Side-by-side view: load testing and live stream metric,
bottom sections

Chapter 9 Monitoring Azure Functions with Application Insights

239

In addition to the summary page, now that you have more data in

App Insights, you can navigate to other App Insights menus for further

investigation or to create alerts.

�Summary
In this chapter, we introduced App Insights and showed how to integrate

it into Azure Functions. You then learned how to use App Insights to

detect failures in Azure Functions. During the latter part of the chapter,

you combined load testing from Azure DevOps, autoscaling features from

Azure Functions, and the live stream metric from App Insights to monitor

the performance test in real time.

Figure 9-26.  Performance test summary and request details

Chapter 9 Monitoring Azure Functions with Application Insights

241© Agus Kurniawan, Wely Lau 2019
A. Kurniawan and W. Lau, Practical Azure Functions,
https://doi.org/10.1007/978-1-4842-5067-9

Index

A, B
AddMessage() method, 163, 173

Android application

development

Android studio, 145

Azure functions, 150, 151

data verification, 152

designing UI, 146

EditText components, 146

JSON data, 148

SDK libraries, 144

Toast object, 150

URL, 147

Application insights

architecture, 213, 214

Azure functions (see Azure
function, application

insights)
creative instance, 215, 216

distributed tracing, 215
naming, 216

overview tab, 217
typical report, 214

Application performance
monitoring (APM), 213

Apps dashboard, 12, 13

App Service Plan, 11
Azure function, application

insights
division operation

function, 229–231
failure details

end-to-end transaction,
225, 226

exception details, 226, 227
incident’s details, 225
menu, 224
result, 227, 228

failure, simulation
function’s code, 220–222
HTTP 500 error, 222, 223
parameter, 222

live stream dashboard, 219
new function, 228, 229
publish, code, 231, 232
sleepDelay parameter, 231
testing (see Performance

testing)
traffic, 219, 220

Azure functions vs. logic apps, 20, 21
azureiot_http_run() function,

206, 207
Azure IoT Hub, 178, 179, 183–186

https://doi.org/10.1007/978-1-4842-5067-9

242

Azure SQL Database, 51, 180
adding client IP, 61
connection string, 62
creating table, 66
creation, 56, 58
DDL, 67
firewall configuration, 60, 61
firewall rule, 65
Function Request Table, 67
Object Explorer, 65
properties tab, 64
server creation, 57
size selection, 59, 60
SSMS, 61, 63
Visual Studio, 52, 53

adding item, 71
function app creation, 77
function deployment, 76
NuGet packages, 70
pop-up, 69
publish, 76
SQLClient library, 70
updation, 78

C
Consumption plan, 11
Cosmos DB

account creation, 84, 85
Azure portal, 84
container, 87, 88
FeedbackAndAction

container, 97, 98

follow-up function, 99
geo-redundancy field, 85, 86
globally distributed, 82, 83
multi-API, 82
multi-region, 86
NuGet package

manager, 99
Run() method, 101
trigger

breakpoint toggling, 94
connection string field, 92
data explorer, 95
debug, 96
function host, 93, 94
IceCreamDB database, 92
local.settings.json file, 93
queue return, 91
queue storage

verification, 97
template list, 89, 90
WebJobs.Extensions.

Storage, 90
URI address, 86, 87
verification, 101

CreateFromConnectionString()
method, 199

CRON expression, 35

D
Data definition language (DDL), 67
Development environment, 7
Distributed tracing, 215

INDEX

243

E
Elastic pool, 57
Environment.

GetEnvironmentVariable()
method, 111

ExecuteNonQuery() method,
112, 138, 189

F
Function apps, 10, 18

creation, 77
running and testing, 78
settings, 79
tools and features, 19

Function creation
quickstart, 27
template, 26

Functions runtime, 4

G, H
get() function, 124
GetAllTodo() method, 111, 113
getBody() method, 148

I
InsertNewOrder() method, 161
InsertRegistration() method, 137, 138
InsertSensor() method, 188, 189
InsertTodo() method, 111, 114
Integrated development

tool (IDE), 104

IOT program, development
CreateFromConnectionString()

method, 199
creating .NET Core

program, 196
DeviceClient object, 197
program output, 200
SDK libraries, 195, 196
SendDeviceToCloudMessages

Async() method, 198
SendEventAsync()

method, 199
verifying data, 201

IoT telemetry system
Arduino MKR10000

DHT22 sensor
module, 201, 202

hardware wiring, 202, 203
installing libraries, 204
Sketch program, 205–208
SSL certificate, 208, 209
testing program, 210, 211

Azure functions, 178–180
creating Azure functions

project
ExecuteNonQuery()

method, 189
InsertSensor()

method, 188, 189
IoT Hub trigger, 187
JsonConvert.

DeserializeObject()
method, 187

template, 186

Index

244

data processing
Azure IoT Hub, 183–185
Azure SQL Database, 180–183

general model, 177, 178
IoTHubTriggerConnection

value, 191–193
IoT program (see IoT program,

development)
testing Azure functions,

193–195

J, K
JsonConvert.DeserializeObject()

method, 137, 187
JsonConvert.SerializeObject()

method, 199

L
LoadTestingAzureFunction, 234
Logic Apps, 19–21

M
Messaging and queuing systems

code editor, 45, 46
output binding, 45
SendGrid, 44
service bus creation, 39, 40
Service Bus Explorer, 41, 47
ServiceBusQueueTrigger, 41–43
templates, 38

Microcontroller unit (MCU), 177
Microservices

Azure functions, 158
AzureSQLDB object, 161
Azure storage queue, 171–174
CloudQueue object, 163
connection string, 168
deployed functions, 169
FuncOrder table, 159, 160
implementation, 157
OrderHttpApi, 163, 164
OrderHttpApi function,

testing, 169–171
OrderProcFunc

code, 165, 166
project publishing, 166, 167
SQL database, 158
web application

design, 154
migration, 156
scaling, 154

Mobile applications
Android, 129, 130
Azure services, 130, 131
AzureSQLDB, 137–139
database configuration, 142
HTTP POST protocol, 132
iOS, 129, 130
profile choosing, 140
project creation, 135, 136
publishing program, 140–142
SQL database, 132, 133
testing, 142–144
UserReg table, 134, 135

IoT telemetry system (cont.)

INDEX

245

N, O
NoSQL databases, 81–83

P, Q
Performance testing, 232, 233

cooldown period, 238, 239
history, 233
live stream metric, 236–238
load test, 234, 235
resources, 235, 236
test type, 234

post() function, 125
practicalazurefunctionssb, 40
Premium plan, 11
Programming languages, 4
Programming model

configuration file, 25
input bindings, 24
output bindings, 24
trigger, 23

Project creation
function app, 9, 10, 12
hosting plan, 10, 11
operating system, 10
runtime stack, 11
template, 14, 16

Project template, 8

R
Relational database management

system (RDBMS), 81
Runtime 1.x vs. 2.x, 4

S
SendDeviceToCloudMessages

Async() method, 198
SendEventAsync() method, 199
Serverless computing, benefits,

2, 3, 5, 6
Service Bus queue trigger

function
creation, 42
details, 43
Integrate menu, 44, 45
SendGrid output

trigger, 48
testing, 46, 48

spinach app, 11
SQL Management

Studio (SSMS), 62

T, U
Timer-based function

creation, 36
CRON expression, 35
logs, 37
use cases, 37

Triggers, 23

V
Visual Studio

autogenerated code, 54
Azure function template, 52
function, locally, 55, 56
Http trigger, 53

Index

246

W, X, Y, Z
Web application

Azure functions, 104

AzureSQLDB object, 113, 114

azure_sql setting, 112

client development, 122–127

database connection string, 107

HTTP trigger, 105

IDE, 104

program development, 109

project creation, 107, 108

project deployment, 115–117

project template, 109

SqlCommand object, 112

SQL database, creation, 105, 106

testing

data verification, 119
HTTP GET, 120
HTTP POST, 118
postman tool, 121
result, 119
URL function, 121

TodoFunctions, 110, 111, 113
web system, 103

Webhook + API
Azure Blob Storage, 31, 32
HTTP trigger, 30
Integrate menu, 29, 30
Manage menu, 34
output bindings, 33
template creation, 29
use cases, 34

Web page, official, 3

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Chapter 1: Introduction to Azure Functions
	An Overview of Serverless Computing
	Introduction to Azure Functions
	Supported Languages
	Function Runtime

	Why Azure Functions?
	Setting Up the Development Environment
	Building a Simple Azure Functions Program
	Creating a Project
	Function App
	Operating System
	Hosting Plan
	Runtime Stack

	Creating a function in a function app
	Running the Application

	Accessing Azure Functions in the Azure Portal
	Comparing Azure Functions to Logic Apps
	Summary

	Chapter 2: Azure Functions Programming
	Exploring the Azure Functions Programming Model
	Triggers
	Input Bindings
	Output Bindings

	Creating Functions from a Template or the Quickstart
	Creating Functions from a Template
	Creating Functions from the Quickstart

	Using Webhook + API
	Integrate Menu
	Manage Menu
	Use Cases of Webhook + API

	Setting Up a Timer-Based Function
	Using a CRON Expression in NCrontab
	Creating a Timer-Based Function
	Exploring Use Cases for Timer-Based Functions

	Messaging with the Azure Service Bus Queue Trigger Template
	Creating an Azure Service Bus
	Creating an Azure Functions Function with a Service Bus Queue Trigger
	Preparing SendGrid
	Adding an E-mail Address as an Output Binding
	Updating the Azure Function Code
	Testing the Service Bus Queue Trigger Function

	Summary

	Chapter 3: Accessing Data from Azure Functions
	Overview of Azure SQL Database
	Using Visual Studio 2019
	Creating Your SQL Database
	Configuring a Firewall for a SQL Database Server
	Connecting Azure SQL Database with SQL Server Management Studio
	Configuring Azure Functions in Visual Studio
	Writing Azure Functions Code in VS
	Running and Testing Azure Function Locally
	Deploying to Azure Functions
	Running and Testing Function Apps in the Cloud
	Summary

	Chapter 4: Accessing Cosmos DB in Azure Functions
	Introduction to NoSQL Databases and Azure Cosmos DB
	Provisioning an Azure Cosmos DB Account
	Dealing with Databases, Containers, and Items
	Cosmos DB Trigger in Azure Functions
	Cosmos DB Bindings in Azure Functions
	Summary

	Chapter 5: Web Back-End System
	Introduction to Azure Functions for Web Applications
	Building a To-Do Web Application
	Creating an Azure SQL Database Instance
	Creating an Azure Functions Project
	Developing an Azure Functions Program
	Deploying Your Azure Functions Project
	Testing Azure Functions
	Developing a Client Web Application

	Summary

	Chapter 6: Mobile Back End
	Reviewing Mobile Platforms
	Introducing Azure Functions for Mobile Applications
	Building a Registration Mobile Application
	Creating an Azure SQL Database Instance
	Creating an Azure Functions Project
	Publishing an Azure Functions Program
	Testing an Azure Functions Program
	Developing an Android Application

	Summary

	Chapter 7: Serverless Microservices
	Introducing Microservices
	Implementing Microservices with Azure Functions
	Building a Microservices System with Azure Functions
	Creating an Azure SQL Database Instance
	Creating an Azure Functions Project
	Publishing Azure Functions
	Testing the OrderHttpApi Function
	Sending Orders to Azure Storage Queue

	Summary

	Chapter 8: IoT Telemetry System
	Introducing the IoT Telemetry System
	Integrating IoT Telemetry and Azure Functions
	IoT Telemetry Data Processing
	Creating an Azure SQL Database Instance
	Setting Up Azure IoT Hub
	Creating an Azure Functions Project for the IoT
	Publishing an Azure Functions Project
	Testing Your Azure Functions Projects
	Developing an IoT Program

	IoT Telemetry with the Arduino MKR1000
	Hardware Wiring
	Installing and Configuring the Arduino Software
	Writing a Sketch Program
	Updating an SSL Certificate for Azure IoT Hub
	Testing the Program

	Summary

	Chapter 9: Monitoring Azure Functions with Application Insights
	Introduction to Application Insights
	Provisioning Application Insights
	Integrating Application Insights to Azure Functions
	Detecting Failures and Errors in Azure Functions with App Insights
	Simulating Failures in Azure Functions
	Viewing Failure Details in App Insights

	Load Testing, Autoscaling, and Real-Time Monitoring
	Preparing Your Code
	Publishing to Azure
	Generating the Load with Performance Testing
	Monitoring the Live Stream Metric During a Performance Test
	Cooldown Period and Result of Performance Testing

	Summary

	Index

