Practical Azure
Functions

A Guide to Web, Mobile, and
lol Applications

Agus Kurniawan
Wely Lau

ApPress’

Practical Azure
Functions

A Guide to Web, Mobile, and
loT Applications

Agus Kurniawan
Wely Lau

Apress’

Practical Azure Functions: A Guide to Web, Mobile, and IoT
Applications

Agus Kurniawan Wely Lau
Fakultas Ilmu Komputer, Singapore, Singapore
Universitas Indonesia, Depok, Indonesia

ISBN-13 (pbk): 978-1-4842-5066-2 ISBN-13 (electronic): 978-1-4842-5067-9
https://doi.org/10.1007/978-1-4842-5067-9

Copyright © 2019 by Agus Kurniawan, Wely Lau

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-5066-2. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5067-9

To my wife, Ela and two children, Thariq and Zahra.
— Agus K

To my dearest wife Shirley and two little sweethearts, Aiden
and Aileen. Without your support, [wouldn’t have been
able to complete this book.

To my parents, who raised me up to be who I am today.
Genuine gratitude to you.

To my wonderful readers, thank you for taking your
time to read this book. I sincerely hope this book elevates
your knowledge on serverless computing to another level.
— Wely Lau, 2019

Table of Contents

About the AUthOrsS..........ccciumimmmmsmsmmmsnsmmmssns - xi
About the Technical REVIEWETccccsmssemmmssnmsmmsnsmsssmsmsssnsssssnsssssnnnas xiii
Chapter 1: Introduction to Azure Functions.........ccccirrnssssssssssnnnnnsssssnes 1
An Overview of Serverless COMPULING.......covrervrnrnieninnn s sesesnens 2
Introduction to Azure FUNCHONS ... s 3
SUPPOIEd LANGUAGES. ... ceverrerrerirererresessessessessssessessesssssssessessessssessessesssssssessens 4
Function RUNTIME ... 4

Why AZUIE FUNCHIONS?.......e v rerererre s sese e ssesssse e ssesasessessessssessessesssssssessees 5
Setting Up the Development Environmentcccccvvennnccrnicnniescnescsssenensenens 6
Building a Simple Azure Functions Program............ccccccoreenrenrescrensenesenesensesenns 8
Creating @ ProjecCt ... s snens 9
Creating a function in a function appccccocvvrininncnrnnn s 12
Running the Application...........ccccverinninininsnsene e 16
Accessing Azure Functions in the Azure Portal..........ccccvveevnencrescrnscnesesenennes 17
Comparing Azure FUNctions 10 LOGIC APPS.....currrrrennrensensenessssessessessesessesseses 19
U] 04 S 21
Chapter 2: Azure Functions Programmingcccussssessmsssssssssssssnnnns 23
Exploring the Azure Functions Programming Model...........ccccevervrvrsnnencrcenne 23
T o[23
INPUL BINGINGS ..o s n e s ae s 24
OULPUL BINGINGS ..veveererrererersere e sessese e seesessessessessssessessesasssssessessesesssssesneses 24

TABLE OF CONTENTS

Creating Functions from a Template or the Quickstartccoccvvievriicrniennnn. 26
Creating Functions from a Template..........ccccvvvrerernrnseniensnensessesesessessensenns 26
Creating Functions from the Quickstart.........c.c.ccocvrvvrinrvniennins s 27

USiNGg WEDNOOK + APL.........ooeecrrece e s snens 28
INEQrate MENUc.ecereree e e sre e 29
1Ty b= Vo T 1 T o 34
Use Cases 0f WeDhOOK + APL..........ccooieennmnnesesesesse s 34

Setting Up a Timer-Based FUNCHON..........ccccocvrcrin e 35
Using a CRON Expression in NCrontabcccccovvvvnvnincsnsncnesssessenen 35
Creating a Timer-Based FUNCHIONccccovvvnevrrcrs et 36
Exploring Use Cases for Timer-Based Functions.............cccocvvviencncnerennnenenes 37

Messaging with the Azure Service Bus Queue Trigger Template...........cccccveenene 38
Creating an Azure Service BUS ..o s 39
Creating an Azure Functions Function with a Service Bus Queue Trigger.....41
Preparing SEndGrid ... 44
Adding an E-mail Address as an Output Binding.........c.ccevivvnnninienninienens 44
Updating the Azure Function Codeccovrvnirnnnnsnnnn s 45
Testing the Service Bus Queue Trigger Function...........ccccevvvncniniennieniennens 46

SUMIMANY....eieeeresere s r e e e e e sre e 49

Chapter 3: Accessing Data from Azure Functionsccuueemnrssssnnnnns 51

Overview of Azure SQL DAtabase..........cocvrieeresmrisnsnsssssssssssse s 51

Using Visual STUdio 2019ccovvvrrieriennrenrererssessesesesessesessesssssssessessessssessessens 52

Creating Your SQL Databaseccuceverecerirrnnencrssers e sens 56

Configuring a Firewall for a SQL Database Server..........cccecvvererierverreeserierienns 60

Connecting Azure SQL Database with SQL Server Management Studio............. 61

Configuring Azure Functions in Visual StUdiocccccvivvernenmnnsennsesenesessssenens 68

Writing Azure Functions Code in VS ... sessessesesessessesse s 71

TABLE OF CONTENTS

Running and Testing Azure Function Locally........c.ccccvvvrininnnnnninsnsensesenennas 75
Deploying t0 Azure FUNCLIONS........c.ccoeviiinienenn s sre s e s s 76
Running and Testing Function Apps in the Cloud..........ccovniniiinininienninienens 78
SUMMANY....eieeeeeererie s e nr e e 79
Chapter 4: Accessing Cosmos DB in Azure Functions.........cceeeeennnneas 81
Introduction to NoSQL Databases and Azure CoSMOS DB...........ccoceeveneneresnnnnncnes 81
Provisioning an Azure CoSmO0S DB ACCOUNL...........cccerieverrerserierserensensesesessensenaens 83
Dealing with Databases, Containers, and REMS..........ccocvvrverrernrnsensenienessensenens 87
Cosmos DB Trigger in Azure FUNCLIONScccovvivernienncsnn s 89
Cosmos DB Bindings in Azure FUNCLIONSc.cccouvnninncnsncnnsinsese s 97
SUMMANY....eieeerieereree s s e e e e 102
Chapter 5: Web Back-End Systemc.ccccimnnsnmmmmmnsssnnnnmnssssssnnsssnnns 103
Introduction to Azure Functions for Web Applications........c.cccccvverinienncnennne. 103
Building a To-Do Web Applicationcccvvvnrnieniennsensense s sesese e sessessens 104
Creating an Azure SQL Database InStanceccccvvrievnsnverienesensensennns 105
Creating an Azure FUNctions Projectcocvvvvrievnrninesnsensenenee s senenens 107
Developing an Azure FUnctions Program..........cccccveevrvenrenesensensesessssensensens 109
Deploying Your Azure Functions Project.........ccccevvvnvnininnensnienenensensennens 115
Testing Azure FUNCLIONS.........cocvinninins e 117
Developing a Client Web Applicationccccvvvievnnenseniennnensensesesessensensens 122
SUMMAIY.c.veitetrere s s e s s a e e s e s s saese e e s aeeaesee e s e eaesae s e e nannnees 128
Chapter 6: Mobile Back Endccucumssmmssansssassssnsssassssassssnsssassssanssas 129
Reviewing Mobile PIatformsccccovvvnvninnnsns e 129
Introducing Azure Functions for Mobile Applications...........cccoevvvvnienncniennenn 130
Building a Registration Mobile Applicationccccvrvernsernrenerieserssesesesenennes 132
Creating an Azure SQL Database Instancec.ccocvverrnenrnsernsenesenenennes 132

vii

TABLE OF CONTENTS

Creating an Azure FUNCtions Projectccccvvvreviennnnienenssensesesessessensenns 135
Publishing an Azure Functions Program.........c.cccecvrnvnvnnnninsnnsenseesensenens 140
Testing an Azure Functions Program..........ccccccvvvvnininnnncniensenseesesenenns 142
Developing an Android Application..........ccccvvvvnienncninse e 144
SUMMAIY.c.veiteerereresessere e sese e s ssesessessesaesssesaesaese s e saesaesaessssesaesaesessensessens 152
Chapter 7: Serverless MiCrOSEIVICeS....cccurussmsrsssnsesssnsssssnsssssnnssssnnsss 153
INtroducing MICIOSEIVICEScccoereecrererereee s 153
Implementing Microservices with Azure FUNCLIONSccovreneresernsenesesenenne 157
Building a Microservices System with Azure Functions.........c.ccccveevverviencennenn 157
Creating an Azure SQL Database InStanceconnrnnnnsnnesenesnnnnes 158
Creating an Azure Functions Projectccocvvvvrnsnnnesnnssesssesessesesssensnns 160
Publishing Azure FUNCHIONSc.cccvveimninennsessesess s s sessenens 166
Testing the OrderHttpApi FUNCLION..........cccvcrienienrcrr e 169
Sending Orders to Azure Storage QUEUEccccvveerersereresesessesessesesseerennes 171
SUMMAIY.c.ueitiirere et e s s s a e e s e s s b e e e s e e R sae e e e e aenne e 175

Chapter 8: loT Telemetry System........cccceinnnnnmmmsssssssnnnnnssssssssssssssnnn 1 77

Introducing the loT Telemetry SYStem ..o 177
Integrating loT Telemetry and Azure Functions.........ccccccevvrinnsncnenssnsennens 178
10T Telemetry Data ProCESSING........ccovererenererscreresesese s s snenes 180
Creating an Azure SQL Database Instance..........c.ccocccvvrinvsnsnienssenseniennn, 180
Setting Up Azure 10T HuD.......ccooivnrcrr s 183
Creating an Azure Functions Project for the [0Tccccocvvincninncnccnenne, 186
Publishing an Azure Functions Project...........ccccvvninsnininnnsnscniessnsensennens 191
Testing Your Azure Functions Projects.........ccccuvvvnnninnnnsnsensesnesensenennens 193
Developing an 10T Program ... sessessessssessessens 195
loT Telemetry with the Arduino MKR1000.........ccoccoerenernscneneserese e 201
Hardware Wiring.......cococevenerenernsesesesessesesssesesese s sessesessesessssesessessssenens 202

viii

TABLE OF CONTENTS

Installing and Configuring the Arduino Software...........cevevvvvriernvenseniennes 203
Writing @ SKetch Programcccccvvvnnninieniennsensesse s sessesessesessessessens 204
Updating an SSL Certificate for Azure 10T HUDcccccvverevvvenvenienenencenennes 208
Testing the Programccccvvenenininsinnensessessse s s e ssessssssessessenns 210
£ 14114 7 211
Chapter 9: Monitoring Azure Functions with
Application InSights.......ccccunmmmmmmnmmmmmmmssssssnnmm s ————————— 213
Introduction to Application INSIghtsccccovvnniennins s 213
Provisioning Application INSIGALScccccvvrievnrnieniene s 215
Integrating Application Insights to Azure FUNCtions..........ccccvvvvirinvnsnneniennens 217
Detecting Failures and Errors in Azure Functions with App Insights 220
Simulating Failures in Azure FUNCLIONScccovievnnnnns e 220
Viewing Failure Details in App INSightscccoovvinvnininnsnceccse s 224
Load Testing, Autoscaling, and Real-Time Monitoringcccocvevvnienniensennenn, 228
Preparing YOUr COURcccoivrirere s sns e snens 228
PUblishing 10 AZUTE.......ccoeviircrre e nnens 231
Generating the Load with Performance Testingccccevivenvnicnennccnenne, 232
Monitoring the Live Stream Metric During a Performance Test..........c..c..... 236
Cooldown Period and Result of Performance Testing.........ccceevvvevreccrnnne. 238
SUMIMANY....eeeerercreree e se e s e re e e e e 239
INA@X.uueiiissnnssssnnnsssannsssannsssansnssanssssanssssannssssnsssssnnssssnnssssnnssssnnnsssnnnnnns 241

ix

About the Authors

Agus Kurniawan is a lecturer, IT consultant, and author. He has 15 years
of experience working on various software and hardware development
projects, delivering materials in training and workshops, and doing
technical writing. He has been awarded the Microsoft Most Valuable
Professional (MVP) award 14 years in a row.

Agus is a lecturer and researcher in the field of networking and
security systems as part of the Faculty of Computer Science at Universitas
Indonesia, Indonesia. Currently, he is pursuing a PhD in computer science
at the Freie Universitét Berlin, Germany. He can be reached on Twitter at
@agusk2010.

Wely Lau is a developer, architect, trainer, consultant, technical writer, and
technology lover.

With the grant of the ASEAN Graduate Scholarship, Wely obtained
his MS in information systems from Nanyang Technological University.
He currently works as a cloud solution architect on the Azure application
development platform for Microsoft Asia Pacific.

In his spare time, he writes a blog, delivers presentations, and
participates in the online community. His passion in driving Microsoft
technologies, especially Azure, resulted in him being awarded the first
Windows Azure MVP in Southeast Asia.

Wely can be reached by e-mail at wely.lau@gmail.com.

About the Technical Reviewer

Mayur Tendulkar is technology solutions professional who works at
Microsoft in Singapore, helping people with technology. Previously he
was a program manager on the Xamarin team at Microsoft, working in
Pune, India. Before joining Microsoft, he was awarded the Microsoft
Most Valuable Professional for Windows development and worked

as a developer evangelist with Xamarin. He has been writing mobile
applications since the days of Windows Mobile 5.0 and loves everything
mobile and cloud these days. You can find him talking at conferences, at
user groups, and on various social channels. His coordinates are @mayur_
Tendulkar and mayur - tendulkar on Git. You can follow his thoughts on
his blog: http://mayurtendulkar.com.

xiii

http://mayurtendulkar.com/

CHAPTER 1

Introduction to Azure
Functions

Azure Functions is a Microsoft Azure service that provides a serverless
solution, enabling developers to address their business problems
efficiently. In this chapter, we will start by demystifying the serverless
concept. Subsequently, we will explore Azure Functions and show how to
set up the development environment. Then, we will show how to develop a
simple program with Azure Functions.

The following topics are covered:

e An overview of serverless computing
e Introduction to Azure Functions
e How to set up the development environment

o How to develop a simple program using Azure
Functions

e How to use the Azure portal

© Agus Kurniawan, Wely Lau 2019 1
A. Kurniawan and W. Lau, Practical Azure Functions,
https://doi.org/10.1007/978-1-4842-5067-9_1

CHAPTER 1 INTRODUCTION TO AZURE FUNCTIONS

An Overview of Serverless Computing

Serverless computing, or in short serverless, is yet another buzzword in the
computing industry that has been very popular in recent years.

There are several characteristics and benefits of serverless. First,
the term serverless doesn’t mean that there are no servers. There are
certainly servers involved; however, they are being abstracted. That means
developers do not need to worry about the server provisioning, software
patching, and scaling. It will all be taken care of by the serverless platform.
This enables developers to focus more on writing code to solve business
problems.

In addition, the code that you deploy to the serverless platform will be
executed based on a specific event. Here are some examples:

e You can use a timer trigger to clear a temporary table in
a database every Friday at 2 p.m.

e You can use a queue trigger when a new order is added
to a queue.

e You can use an HTTP web trigger when an HTTP-based
endpoint is being invoked by a browser or client.

Another benefit of serverless computing is the subsecond billing
model. The serverless computing options offered by the major cloud
platforms typically have competitive billing models, and you pay only for
the resources that you utilize.

Does that sound like platform as a service (PaaS) or infrastructure as a
service (IaaS)? It sort of is, but at a finer-grained level.

When you provision a PaaS or IaaS resource (such as a virtual machine
[VM]), you are billed for the duration of VM uptime or running state.
Whether the VM is 10 percent or 50 percent or 90 percent utilized, you pay
the same price, because that entire VM is technically rented to you.

CHAPTER 1 INTRODUCTION TO AZURE FUNCTIONS

By contrast, with serverless, you will be billed only for the resource
execution time and resource consumption. That is because your code will
be run on a pool of available servers, assigned by the serverless platform.

The benefit of this is a better price point and cost efficiency.

Introduction to Azure Functions

As mentioned, Azure Functions is an Azure service from Microsoft that
provides serverless solutions for running small pieces of code. When using
the service, you can focus on writing code to solve business problems
without worrying too much about the whole platform or infrastructure.
Therefore, it can significantly accelerate your development time. You can
read more about Microsoft Azure Functions at https://azure.microsoft.
com/en-us/services/functions/, as shown in Figure 1-1.

& Microsoft Azure

Functions

Build apps faster with a serverless architecture

development with an e
le on demand and pay
CONSUME

Take advantage of serverless compute with Functions <’>

Figure 1-1. Official web page for Azure Functions

https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/

CHAPTER 1 INTRODUCTION TO AZURE FUNCTIONS

Supported Languages

Currently, there are three officially supported languages in Azure
Functions: C#, JavaScript, and F#. However, there are other languages
that are expected to be supported in the future such as Java, Python, PHP,
and more.

You can find the list of supported programming languages at
https://docs.microsoft.com/en-us/azure/azure-functions/
supported-languages.

Function Runtime

The Azure Functions runtime defines the fundamental way your function
will run on top of the platform. There are two versions of the Azure
Functions runtime: 1.x and 2.x. The following are the main differences
between the two:

¢ Runtime 1.x only supports development on the
Windows platform because it was built on the .NET

Framework.

e Runtime 2.x supports development across platforms,
including Windows, Linux, and macOS§, as it was built
on top of .NET Core.

To learn more about the considerations when choosing the runtime
version as well as the migration process, visit https://docs.microsoft.
com/en-us/azure/azure-functions/functions-versions.

https://docs.microsoft.com/en-us/azure/azure-functions/supported-languages
https://docs.microsoft.com/en-us/azure/azure-functions/supported-languages
https://docs.microsoft.com/en-us/azure/azure-functions/functions-versions
https://docs.microsoft.com/en-us/azure/azure-functions/functions-versions

CHAPTER 1 INTRODUCTION TO AZURE FUNCTIONS

Why Azure Functions?

We've already discussed the general benefits of serverless computing. There

are additional competitive advantages of Azure Functions, listed here:

Fully open source: Azure Functions is open source,
which enables the community to contribute their ideas
or file issues to try to improve the product. You can
find the source code of the runtime/host, samples,
command-line tools, templates, and UI here: https://
github.com/Azure/Azure-Functions.

Inherits the Azure platform capabilities: As one

of the important services, Azure Functions naturally
inherits tons of capabilities from Azure. This includes
a multiregion presence around the globe, security,
compliance and certification, platform operation, and
many other aspects.

Integration with other services: Azure Functions has
so many built-in integrations with services including
Azure services (such as Azure Storage, the SQL
database, Cosmos DB, etc.) and external services (such
as SendGrid e-mail services, Twilio SMS services, and
even external files).

https://github.com/Azure/Azure-Functions
https://github.com/Azure/Azure-Functions

CHAPTER 1 INTRODUCTION TO AZURE FUNCTIONS

e Community and official support: From a community
support perspective, developers can easily find
documentation, sample codes, and resources on the

Internet.

e StackOverflow: https://stackoverflow.com/
questions/tagged/azure-functions

e MSDN Forum: https://social.msdn.microsoft.
com/Forums/azure/en-US/home?forum=azure
functions

o Raisingissue in GitHub: https://github.com/
Azure/Azure-Functions/issues

Customers can raise an official commercial support ticket for
Microsoft, as discussed here: https://docs.microsoft.com/en-us/
azure/azure-supportability/how-to-create-azure-support-request.

Setting Up the Development Environment

Though you could write and deploy your function code directly on the
Azure portal, developing and testing your functions locally provides higher
productivity and convenience.

Depending on your language and operating system preference, here
are several popular ways to develop functions with Azure Functions:

e Command prompt and terminal (supports C#, C#
Script, JavaScript)

e Visual Studio Code (supports C#, C# Script, JavaScript)
e Visual Studio 2019 or 2019 (supports C# only)

Figure 1-2 illustrates how you as a developer will be able to access
Azure Functions through the previously mentioned techniques.

https://stackoverflow.com/questions/tagged/azure-functions
https://stackoverflow.com/questions/tagged/azure-functions
https://social.msdn.microsoft.com/Forums/azure/en-US/home?forum=azurefunctions
https://social.msdn.microsoft.com/Forums/azure/en-US/home?forum=azurefunctions
https://social.msdn.microsoft.com/Forums/azure/en-US/home?forum=azurefunctions
https://github.com/Azure/Azure-Functions/issues
https://github.com/Azure/Azure-Functions/issues
https://docs.microsoft.com/en-us/azure/azure-supportability/how-to-create-azure-support-request
https://docs.microsoft.com/en-us/azure/azure-supportability/how-to-create-azure-support-request

CHAPTER 1 INTRODUCTION TO AZURE FUNCTIONS

P i
/ \ b
{ \ Azure Resources
| |
".

/ Azure Platform

m Dewlnpmem /
Environment /
\q—_ _ s

Figure 1-2. Development environment and interaction with Azure
Functions

In addition, you can use Application Insights to perform application
monitoring, which will be discussed in more detail in Chapter 9.

You can find more information including how to install these packages
and tools at https://docs.microsoft.com/en-us/azure/azure-
functions/functions-develop-local.

You will learn how to develop Azure Functions programs in this
book primarily using Visual Studio 2019 with Visual C#. Microsoft
provides a project template for Azure Functions in Visual Studio 2019.
From the welcome screen, choose New Project. Type function in the
search bar, and you should see the Azure Functions project template, as
shown in Figure 1-3.

https://docs.microsoft.com/en-us/azure/azure-functions/functions-develop-local
https://docs.microsoft.com/en-us/azure/azure-functions/functions-develop-local

CHAPTER 1 INTRODUCTION TO AZURE FUNCTIONS

Create a new project

Recent project templates

¥ an

Figure 1-3. Project template for Azure Functions in Visual Studio 2019

Building a Simple Azure Functions Program

In this section, you will build your first simple program with Azure
Functions. You also will use the existing Azure Functions template for this
demo. Then, you will call the program from a browser. To implement this
demo, you should have an active Microsoft Azure account. Microsoft also
provides a trial for Microsoft Azure, which can be found at https://azure.
microsoft.com/en-us/offers/ms-azr-0044p/.

Let’s get started!

https://azure.microsoft.com/en-us/offers/ms-azr-0044p/
https://azure.microsoft.com/en-us/offers/ms-azr-0044p/

CHAPTER 1 INTRODUCTION TO AZURE FUNCTIONS

Creating a Project

First, let’s create a project for Azure Functions using the Azure portal. You
can access itathttps://portal.azure.com/. Technically, you can use any
browser to access the Azure portal. After logging on to your Azure account,
you can start creating a resource with Azure Functions. Click the “Create a

resource” item, as shown in Figure 1-4.

@ portsl arure com.

Microsoft Azure £ Search resources, services, and docs
/ it
- Create a rescurce New O x
i Allservices E . /
' R serpeis jngx 7.
R S el B S e ‘“’"'"E"'"’““‘ o
kst brsoria
N tweorion
& osshbosed .
100 Resource groops Storage Ubanty Server 1804 LTS
Web T
Al resousces.
Mable
T Recent SO Server 2017 Enterprise Windows
2 Containers Server 2016
& Agp Sarvices Laaem mcre
Databases
8] Virtual machinad [cassie) "
Anatytics T Reserved VM instances
3 virtual mackires Ol Quciian naenal

M+ Machine Learning
B 3L cutabases

Internet of Things. Service Fabric Cluster

£ Cloud sarvices [chissic) i Ouckstant wincial
ation
Stnerigtions

Secuy Web Agp for Containers

ideriity
T Storage accounts
= Developer tocks DM Function Ape /
6 KTt Management Tooks ¢ Quickstar sl
¥ fown s Doy Software a5 3 service (53a5)

Batch Service

0 Security Center

Figure 1-4. Creating a new Azure Functions resource

Select Function App, as shown in Figure 1-4. Subsequently, you will see
a Function App form, as shown in Figure 1-5. Fill in all the fields to create a
function app.

https://portal.azure.com/

CHAPTER 1 INTRODUCTION TO AZURE FUNCTIONS

e 1 Function App

{- Crvate & rescasce Function App
Al services N
savomsTis et R
]
.
Ribource grovps I (--___—-—
Al resousces . o
Connte e () Uve wivting A—
Racent
snacn
App Sarvces
Virtual machires (cas = g
ER Virtual machines A -y
[SOL catsbunes ontmpton Pan v | of—
Cloud vervices fclassic)
Swtcriptions Wost By Y
rmam Anabytcs jobs
Nt v
Sorage sccounts —

LI ocauite Cocten

Figure 1-5. Filling in the Functions App form

Function App

Think of a function app like a container that hosts the execution of one or
more functions. This means all the functions that you create within this
function app will inherit the same configuration such as the operating
system, hosting plan, runtime stack, and so on.

Operating System

You can choose to run your function app on either the Windows or Linux
operating system (Linux is currently in Preview). We will choose Windows
in this example.

Hosting Plan

The hosting plan defines how your function app will eventually run.
Choosing the Consumption Plan enables your function app to run

on the pool of shared resources among all other tenants and obviously

with the appropriate security measurements and segregation in place.

10

CHAPTER 1 INTRODUCTION TO AZURE FUNCTIONS

Your function app will be scaled automatically by Azure when the load
increases or decreases. You will be billed only for the execution and
resource consumption when your code is executed. Therefore, you can
consider this option to be truly serverless.

You can also choose to deploy your function app on an existing App
Service Plan. Because you define the size of your App Service Plan (the
number of instances and the size of each instance), the resource function app
will be dedicated to you. However, you will be responsible for scaling the plan.
With this option, you will be billed based on the App Service Plan, regardless
of how many times your code executes. Another benefit of the App Service
Plan is that it enables you to access some additional features such as virtual
network (vnet) connectivity and the Always On feature, which allows you to
control a cold start. These features are not available in the Consumption Plan.

At the time of this writing, Microsoft has just introduced a new plan in
Preview mode named Premium Plan. The main objective of introducing
this option is to provide better performance (of each instance size) as
well as more predictable pricing. You can learn more about the Premium
Plan at https://docs.microsoft.com/en-us/azure/azure-functions/
functions-scale#tpremium-plan.

For the example in this chapter, we will choose the Consumption Plan.

Runtime Stack

The runtime stack defines the preinstalled runtime environment that will
run your code in the language of your choice such as .NET, JavaScript, or
Java. For the example in this chapter, we will select .NET.

You can fill in all the required fields including Resource Group and
Storage.

When you're done, click Create. You will then have an Azure portal that
shows your Azure function app. You can check whether the Azure function
app is already created. Figure 1-6 shows our function app, called spinach. You
can see that the function app creation wizard generates four Azure resources.

11

https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale#premium-plan
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale#premium-plan

CHAPTER 1 INTRODUCTION TO AZURE FUNCTIONS

e+ Al rescusces
f Create a rescurce All resources L
= Allservic
dadd E2g o Tey
F—
Subscriptisns: A
[omhbosed
e - kxsborn v | Al w | Mo groupng ~
Resounce groups
Bems
Al st - °
Recen sy L] RESSURCE Gacer LacaToN]

......

Contral s

a

"
Q:ag
P

i1

3

£
l I
¥ g

E
E E E EE E B E

Cloud vervices f¢ @ apinach Application Insights spinach West furope
Subrcrigtions apinach App Serve Wt Furope
Saream Analytics jobs spinachbstonsg Stevage secunt pinach Weat Europs
Storage accounts B, Weuturopept AppSensceplan spinach West Eurcpe
T s
Azure Active Directory
Monitor

O Security Center

Figure 1-6. A function app was created

Next, you can create a function on the function app.

Creating a function in a function app

To create a function, you should go to the Function Apps dashboard by
clicking your function app.

After clicking your function app, you should see the Function Apps
dashboard, as shown in Figure 1-7. There are three types of apps in your
function app: functions, proxies, and slots. As of this writing, the slots
feature is in Preview mode.

12

Microsoft Azure

T~ Create & resource

S A sarvices
VORI

L3 vusrbosrd

) hercurce grougs
Al resourcey

£ Beceet

& App Services

&) Virtual machines (chasc)

3 Virtual machines

B SO dutabases

£ Cloud senaces iclansic)
Subnerpeanm

2 Sormam Aealytscs jobs

5 Saorage sccounts

P

O Anure Active Directony
Morvto!

O Securty Conter

CHAPTER 1

Jpinach

ue me o

I
i

[+]

+ v

Overview Platiorm festures
.y) memtart % Gotputlon profie) Remet publish profie
B Deiete
St Submcription Resource group
S Rurving spinach

"
Patga: fupinach arurewebtes ret

App Service plan | pricng Ser

WestEurnpePan (Conmumption

A,

You have created a function app!
Now it is time to add your code...

Figure 1-7. Azure Function Apps dashboard

If you click Functions, you should get a list of functions that you have

created. You can see this in Figure 1-8.

~+ Creane s revource

) Resousce grougs
AN resourcet.

=) Recert

& App Senvices

virtual machines {class)

I virnaal machines

£ 50t datatonen

5 Cloud sarvices (clamic)
Submeripton

2 Strmaem Analyta potn

TS Stovage mourits

% T Hub

i portalazure com

i'iI T:%i %T g:

;
|

STV

Figure 1-8. A list of functions in Azure Functions

INTRODUCTION TO AZURE FUNCTIONS

CHAPTER 1 INTRODUCTION TO AZURE FUNCTIONS

For the demo purposes, we will use a project template. Select the
“HTTP trigger” template by clicking the + icon to the right of Functions
(as shown in Figure 1-9).

Home > Al resources > spinach

~+ Crmaze s revource spi_mlch X
S Al senvices -
ravoaes et = Choose a template below or go to the quickstart
0 Casitnen I
Raiins s 2= Punction Apps T | 28
Al et = i wplnach
5} Recert » = Functions + *_.—.—-— E HTTP trigger
Ao Sanices - /
£ virnual machines {clasi) » i Siots (preview) . mwwwmwn;nnm«w:::

B virtual machines e
B 5 detabases
5 oo services fclamsic]
Subncriptaorm
3 Stream Analytics jobs
S Storage accourts @ Thwer blgger
£ T Hub

Afurncion Shat wl Be run o8 § secfied schodue
& Agure Active Drectery

0 Securty Conter

Figure 1-9. Creating a new Azure Functions project based on a
template

You will get the form shown in Figure 1-10. Fill in all the required fields.
Select Function as the authentication level. When you're done, click the
Create button.

14

CHAPTER 1 INTRODUCTION TO AZURE FUNCTIONS

E

& A Servions

'éil{
§

& ienssl maching (ol

* v 4

i i i

ER viensal machines
B 508 dutabases
5 Choud services iclasaic)
Subncriptenm
3 Stream Analytecs jobs
T Storage accourts
£ T Hub
£ Azure Active Dievctary

Monor

O Securty Conter

Figure 1-10. Filling in a name

After clicking the Create button, you should get the form shown in
Figure 1-11. You will see some sample code from the project template
(HTTP trigger). You can also edit this program directly in a web editor.

15

INTRODUCTION TO AZURE FUNCTIONS

CHAPTER 1

Home Al resousers Spingch - Myfmplefunction
spinach - MySimpleFunction

A services =

i o . =

un.csx L »hn Gt Pt LB,

(&1 Dwnboars :
25} Rasoumcs. 1= Function Apps

A resorces w) spinach

5} Recers - 1= Functions +* i i
& Bpp Senvicey v / MySimpleFunction
%] Virtual machines [caic) % Integrate
N virtual machines

5 @ Manage - Body) b 2
508 datsbanes a astBod
© Clod sarices clasnic) -

» i= Proxies
Subscrprons] ara
¥ = Slots (preview) -

3 Stream Anatytics jobs
B Storage accounts
£ T Hub
@ Azure Active Directory

% Mondor

~ logs Conscle

O secursy Corner

Figure 1-11. Code in the template

Now you are ready to run the program.

Running the Application

You can run the program by clicking the Run button. You should get the
dialog shown in Figure 1-12. Copy this URL, add &name=xxx to it, and paste
the URL into another browser tab.

e

€ Home » All resources * spinach - MySimpleFunction

~+ Create a resource

S Al services
FAVORITES

&1 pashboard

] Resource groups

T Al resources

(5) Recen

2 app Services

&1 Virtual machines (classic)

I virtual machines

& 50L databases

5 Cloud services (classic)

Subscriptions

Figure 1-12.

16

spinach - MySimpleFunction

Get function URL

uatiaplivySiaplara | BCony

PYRTIV3gET

Getting a copy of the URL

CHAPTER 1 INTRODUCTION TO AZURE FUNCTIONS

If you succeed, you should get a response from the server. For instance,
we set name=agusk, so you can see our program output in Figure 1-13.

@ spinach.azurewebsites.net

Hello, agusk

Figure 1-13. Accessing an Azure Functions application from a browser

Try changing it to name=??, with ?? as your own name. Then, visit the
URL in a browser.

Accessing Azure Functions in the Azure
Portal

Azure Functions provides some features and tools to manage its service.
If you open the Azure dashboard, you should see some resources
(Figure 1-14).

17

CHAPTER 1 INTRODUCTION TO AZURE FUNCTIONS

- Create a rescusce All resources g X
= Allservices
o Toy preview
s
(& basrboaed
Al g v | | Mocames v | At v | Mogroupng
] Resource groups
[T ne
prpee—— °
5} Rmcent asan o EounCE Gacue wocanon
& App Semions Contral US
& Virtual mackies (classic) Sciathaint Al
K Virtusl machines T
B 50U catabases Contral US
@ Choud saadcas jclasdlc) @ spinach Application Insights spinach West Europe
St spinach App Service spinach West Lurope
St Arlyics Jod T spinachbntonge Starage sccount spinach Went Eurepst
TGN Kxainm B, Westiurspeban App Servce plan spinach Wet Europe

2 1T s

Azure Active Directory
Maoritor

L0 Sexurity Conter

Figure 1-14. All these resources are related to Azure Functions

If you want to open a function app, open a resource by clicking App
Services. Then, you should get the form shown in Figure 1-15. There are
two tabs on this form, Overview and “Platform features.”

The “Platform features” tab consists of configuration settings, tools,
and monitoring settings. You can configure a custom domain and manage
authentication. You also can work with some tools by following the links.

18

CHAPTER 1

INTRODUCTION TO AZURE FUNCTIONS

m bt oatbin i)
e

Home > All resources * spinach

Create a resource spinach
= Al services
K “spinach” x Overview Platform features
FAVORITES
I
(5] Cashboard
" qrous == Function Apps
Al resources w < spinach o -2
D R —— & Fundtion app setings Networkdng
= Appication settings 0
& App Services = / MySimpleFunction
| Propertes B Custom oomains
2. Virtial machines [classic)
¥ Integrate 8 Authentication | Authorization
I3 virtual machines © Manage 2 Al settings i Managed service identity
& 50U databases Q Monitor Push notifications
45 Cloud services (classic) o Code Deployment
b ;= Proxies

Subscriptions

» i= Slots (preview)

{8 Deployment Conter =

Monitoring

o Stream Analytics jobs B Log streaming =~

B Sorage scowts Development tools 8 Process explorer

£ loT Hub] Logic Apps = i erics
: I Corsole (CMD | PowerShell) =
b Azure Active Directory
K Advanced tools (Kudu)
Monitor
App Service Editor
B Seciin Contae

Figure 1-15. Several features and tools for a function app

If you are familiar with Azure App Service, you will notice that its
platform features are similar. This is because Azure Functions is hosted on
the same underlying technologies as Azure App Service.

You will explore these features in the upcoming chapters, getting
details and working through various scenarios.

Comparing Azure Functions to Logic Apps

While the main topic of this book is Azure Functions, it’s worthwhile to
mention another serverless offering named Logic Apps. You can think

of Azure Functions as a serverless code platform, while Logic Apps is a
serverless workflow-based platform suitable for integration scenarios.
There is very little (in fact almost none) code required while authoring a
Logic Apps solution. Logic Apps comes with a visual designer, which can
be accessed from the Azure portal, as shown in Figure 1-16, or a tool such
as Visual Studio.

19

CHAPTER 1 INTRODUCTION TO AZURE FUNCTIONS

T B
4
E Traraly
J
E Dwtect Sentiment :
-
E Reeply to emad B Morve emasl to trash
Figure 1-16. Visual designer of Logic Apps
Table 1-1 compares Azure Functions to Logic Apps.
Table 1-1. Comparison of Azure Functions and Logic Apps
Azure Functions Logic Apps
Authoring Code-based with multiple Workflow-based visual designer
style languages

Connectors ~ Minimum; supports mostly Azure ~ More than 200 connectors
services in triggers and bindings; from Azure-based to Microsoft

some external connectors for ecosystems to third parties and
output bindings more

Deployment Can be deployed as the Can be deployed as the

model Consumption Plan or a dedicated ~ Consumption Plan or a

plan in an app service environment dedicated plan in an integrated
service environment

Runtime Open source and can be deployed Available only in the Azure cloud
locally or also available in Azure

20

CHAPTER 1 INTRODUCTION TO AZURE FUNCTIONS

Note that you can invoke Azure Functions programs from the Logic
Apps designer, as shown in Figure 1-17.

Logic Apps Designer

| LT e Codeview [Templates B Connectors P Help
w
m Translate text (Preview)
E Detect Sentiment
m Condition
s + ~

[x

Swagger actions Actions

PP Cosmosriggert
Rl e Functiors

Don't e what you reed?

(D) information on creating Azure Furction Apps can be found here

”

Figure 1-17. Integrating Azure Functions with Logic Apps

Summary

In this chapter, we started with the concept of serverless computing. You
then learned what Azure Functions is. You also developed a simple Azure
Functions program from a template. We subsequently compared Azure
Functions to Logic Apps.

In the next chapter, you will focus on Azure Functions programming

with some scenarios.

21

CHAPTER 2

Azure Functions
Programming

This chapter discusses the programming model of Azure Functions and
enables you to increase your development productivity.

Exploring the Azure Functions
Programming Model

While Azure Functions provides some serverless benefits, one of its unique
features is its programming model, which simplifies the way developers
write code through bindings.

Integration with other services (regardless of whether they're within
Azure or external to it) is common and critically important. As such,
triggers and bindings allow developers to access other services more
efficiently while writing less code.

Triggers

As you can tell from the name, a trigger defines how a function will be
executed based on a specific event. The trigger could be an HTTP request,
a timer that is set to run every five minutes, or even a new message that is
enqueued.

You can have only one trigger per function.

© Agus Kurniawan, Wely Lau 2019 23
A. Kurniawan and W. Lau, Practical Azure Functions,
https://doi.org/10.1007/978-1-4842-5067-9_2

CHAPTER 2 AZURE FUNCTIONS PROGRAMMING

Input Bindings

In the event that your code needs to process or access supplementary data
from other services, input can really simplify the way you code.

Take the example of reading a blob text file from an Azure Blob
Storage account. Traditionally, you would need to use the Azure
Blob Storage SDK or the REST API (depending on your choice
of programming languages). This can take 12 to 20 lines of code,
including the instantiation of CloudStorageAccount, CloudBlobClient,
CloudBlobContainer, and so on.

An input binding can achieve this much more easily in just five lines in
the binding config file.

You can have more than one input binding in a function.

Output Bindings

As you can tell from the name, an output defines how you want to produce
the result that you've written in your code.

You can have more than one output binding in a function.

Figure 2-1 and Figure 2-2 illustrate how triggers and bindings are
defined in both configuration files (function.json) and the actual
function code (run.csx).

24

CHAPTER 2 AZURE FUNCTIONS PROGRAMMING

“bindings™: [
{

“authLevel™: =

“nane”

“type™: "httpTrigger™,
“direction®: "in",

“type™: "blob~,
“name”: "inputBlob”,

“path™: “incontainer/greeting.txt”,
“connection™: “ArureWeblobsDashboard™,
“direction™: "in”

2) input

}

1.
“disabled™: false

View files Test

+Add TUpload @ Delete

& HrpTrggerCSharpt
[functionjson

Drunce

Figure 2-1. An example of a function configuration file (function.json)

run.csx “ I B Run <> Get function URL
1 #r "Newtonsoft.lson”
2
3 using System.Net;

o0~ @

26

using Microsoft.AspNetCore.Mvc ;|
using Microsoft.Extensions.Primitives;

using Newtonsoft.Json; 1) Triggers

2) Input

public static async Task<IActionResult» Run{m-,

req,]&tning 1nputBlob} ILogger log)

string name = req.Query["name"];

dynamic data = JsonConvert.DeserializeObject(requestBody);
name = name ?? data?.name;

string greetingMessage = inputBlob;
if(greetingMessage == null)
greetingHessage = “Hello ~;

H

log.LogInformation("C# HTTP trigger function processed a request.”);

string requestBody = await new StreamReader(req.Body).ReadToEndAsync();

4) Your actual
codes

return name != null
? (ActionResult)new OkObjectResult(greetingMessage + name)

: new BadRequestObjectResult{"Please pass a name on the query string or in the request body™);

3) Output

Figure 2-2. An example of an actual function (run.csx)

25

CHAPTER 2 AZURE FUNCTIONS PROGRAMMING

You can define triggers and bindings in several ways in the Azure
Functions programming model. The previous sample uses C# Script
(.csx). Obviously, the code will differ when you use C#, JavaScript, or
another programming language. For more details, you can see other
variations here: https://docs.microsoft.com/en-us/azure/azure-
functions/functions-triggers-bindings#example-trigger-and-
binding.

Creating Functions from a Template or
the Quickstart

In this section, you will explore how to create a function from a template
and the quickstart process.

Creating Functions from a Template

As you learned in Chapter 1, when you click the + icon to add a function,
you will see the list of function templates based on language and scenario,
as shown in Figure 2-3.

26

https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings#example-trigger-and-binding
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings#example-trigger-and-binding
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings#example-trigger-and-binding

CHAPTER 2 AZURE FUNCTIONS PROGRAMMING

Choose a template below or go to the quickstart

E) [Eperimental Language Support
R P DA Language [Al E sconario: [oy fl @) Disabled
cn
+ Core
=l HTTP trigger Fe @]
= T AP & Webhooks
Savasenipt
A function that will be run whenele it receives ¢ A functi Data Processing tied schedule
request, responding based on datl in the body « Python ! .
string Samples
Monitoding
C# F# JavaSeript Python 1oT Hub ript

Queue trigger E Service Bus Queue trigger

A function that will be run whenever a message is added to A function that will be run whenever a message is added to
a specified Azure Storage queue a specficied Service Bus queue

C# F# JavaScript Python C# F# JavaScript

E Service Bus Topic trigger Blob trigger

Figure 2-3. List of templates

These templates allow developers to create functions by filtering
the languages (C#, F#, JavaScript, and so on) or scenarios (Core, API &
Webhooks, IoT Hub, etc.). You can also choose to enable the experimental
language support for more language options.

Creating Functions from the Quickstart

As you can see, with more than 60 templates, there are many combinations
that you can choose from. You can also choose from the quickstart menu
for a simpler view by clicking the “go to the quickstart” link. This will
enable you to choose only two steps (the scenario and then the language),
as shown in Figure 2-4.

27

CHAPTER 2 AZURE FUNCTIONS PROGRAMMING

<P

Get started quickly with a premade function

1. Choose a scenario

</>) g

Webhook + API Timer Data processing

2. Choose a language
® (CSharp JavaScript FSharp

For PowerShell, Python, and Balch, create your own custom functon,

Create this furction

Figure 2-4. Creating functions from the quickstart menu

Using Webhook + API

Let’s explore Webhook + API, as this is one of the most popular options
when using Azure Functions. This option simply generates an HTTP
endpoint, and your code will be executed when the endpoint URL is
invoked.

As shown in Figure 2-4, choose Webhook + API from the scenario
options, then select CSharp from the language options, and finally click the
“Create this function” button.

You will notice that the function with the default name HttpTrigger1
(along with several files) will be created (see Figure 2-5). This is similar to
what you saw in Figure 2-2.

28

CHAPTER 2 AZURE FUNCTIONS PROGRAMMING

'

o MO
© mew BadRnquestOnjectResult

1) Function App's 52

{req.Bady}
serlal lzedolect [requestBody)

ctmecult($Hollo, {name}”)
("Please pass 2 mame on ¢

2) Files for each
function

menu

3) Editor

Figure 2-5. Azure Functions template created with Webhook + API

e The left menu displays a list of resources (including

functions) within your function app.

o The right menu shows files for each function.

function.json is the function’s configuration file,

while run.csx is your actual function code.

o The editor in the center displays sample code for

your function. Notice that the editor will load the file

according to your selection on the right.

Integrate Menu

Let’s explore the Integrate menu, which is right below your function name,

in the left menu. The upper section allows you to define the triggers,

inputs, and outputs of the function. Figure 2-6 shows how the associated

information is displayed.

29

CHAPTER 2 AZURE FUNCTIONS PROGRAMMING

Triggers @ Inputs @ Outputs &

% @

BT

o
L "

Figure 2-6. Integrate menu in an HTTP trigger

Because you chose Webhook + API in the quickstart menu, the Azure

portal automatically populates the HTTP trigger for you. You can modify

the HTTP trigger accordingly as follows:

30

Choosing all or selected HTTP methods (GET, POST,
DELETE, and so on)

Defining a route template
Defining a request parameter (default name required)

Setting the authorization level, which includes the
following:

¢ Anonymous: Anybody can invoke this function
without having to present any key.

e Function: You can invoke this function by
presenting the key at the function level, which
means each function will have its own key.

e Admin: You can invoke this function only with an
admin (master) key.

CHAPTER 2 AZURE FUNCTIONS PROGRAMMING

Click + New Input in the upper part, and you will see several input
binding options. Choose Azure Blob Storage and click Select (see Figure 2-7).

Advanced edic

Triggers @ inputs @ | Qutputs @

o Mo input | HTTF ($return]

o torw Cnatput

Figure 2-7. Choosing Azure Blob Storage as the input binding

If you encounter a warning regarding the Azure Blob Storage input
extension not being installed, simply click Install. After a few moments,
you should be able to use this Blob Storage input binding (Figure 2-8).

Triggers © Inputs © Outputs @

Figure 2-8. Blob Storage input binding details
31

CHAPTER 2 AZURE FUNCTIONS PROGRAMMING

You can leave the storage account as it is or choose your preferred
storage account to fetch the blob from. In our case, we already prepared a
storage account, container, and blob in the form of a text file, as shown in
Figure 2-9.

) | * Root * incontainer

5 [y Copy % Move Joo X DSearch [1 [WebURL [«] Set HTTP Headers | Capacity Report

Hame Size Date Modified
L ..
| greetng2.xt 10 Byte 1/17/2019 6:46:46 PM
J greeting2.txt - Notepad = a X
[File Edit Format View Help
| Good day,

Figure 2-9. Preparing the storage account, container, and blob

The path defines the blob storage container and the blob name. In this
example, change it to incontainer/greeting2.txt.

BlobParameterName is the parameter name that will be used in your
function code. You can just leave it set to inputBlob. You can click Save
after that. Next, let’s explore the outputs.

As you can see in Figure 2-10, the Webhook + API template provides
HTTP($return) under Outputs, which you can click to find out more
details. You can also click + New Output since the output binding allows
you to have more than one output.

32

CHAPTER 2 AZURE FUNCTIONS PROGRAMMING

Triggers @ Inputs @ Qutputs @

HTTP jreq) Azure Biob Storage (nputBiob) HTTP (Sreturn)

& b Input l + New Output l

Agure Table Slorage ure Lvet Mads

D DD DD O

Sandeid Titic SMS Encel tabie Crutiock mad meisge Micromoh Graph webhook

Figure 2-10. Output bindings

The changes you perform in the user interface (including for
triggers, inputs, and outputs) are reflected in the function.json
configuration file. You can view this file through the “Advanced editor”
link at the top-right corner, or you can navigate to the function.json
file, as shown in Figure 2-5.

Before running and testing the function, make sure to update your
code in the run.csx file, as shown in Figure 2-2. As you can guess, this
example will display the greeting you specified in your blob storage
account. However, if there isn’t any message found in the blob, it will
display the default greeting “Hello.”

33

CHAPTER 2 AZURE FUNCTIONS PROGRAMMING

Manage Menu

Let’s take a step back and further explore the Manage menu for your
HttpTrigger1 function by clicking Manage (Figure 2-11). This menu lets
you do the following:

« Enable and disable the function state
¢ Delete the function

e Manage the keys of function (including the function-
level keys as well as the host- or master-level keys)

sacticalazurefunctions - HttpTriggerl

Function Sate

HAME VALK ACTIONS

Figure 2-11. Manage menu on each function

Use Cases of Webhook + API

There many use cases that you can develop with this template, such as the
following:

e Developing an HTTP API endpoint to listen for a
webhook callback

e Serving as a middle-layer HTTP API for a web front end
such as Angular

o Serving as a middle-layer HTTP API for a mobile
application
34

CHAPTER 2 AZURE FUNCTIONS PROGRAMMING

We will discuss these use cases in more detail in the upcoming chapters.

Setting Up a Timer-Based Function

The timer-based function is another popular template. The idea is to execute
a function on a specific scheduled defined as a CRON expression. Azure
Functions makes use of the NCrontab library for the CRON interpretation.

Using a CRON Expression in NCrontab

A CRON expression is a simple yet powerful way to specify a recurring
time in a string containing five or six characters separated with spaces.
You can learn more about the CRON expression in the examples shown at
https://github.com/atifaziz/NCrontab.

Figure 2-12 explains the CRON format for NCrontab.

[second] [minute] [hour]_[day] [month]I[day-of-the-week]
" ose T 0-23 o 1-3 1\pm 1-12 o 0-6 (Sunday is 0)

Figure 2-12. CRON format in timer-based Azure Functions

Table 2-1 shows several examples of CRON expressions.

Table 2-1. Example CRON Expressions

Number CRON Expression Meaning

1 *#/10 * * * * * Run every ten seconds

2 0010 % * * Run at 10 every day

3 01511 * *1 Run at 11:15 every Monday

4 0 */522-23 * *1-5 Run every five minutes between 10 p.m. and

11 p.m. only on weekdays

35

https://github.com/atifaziz/NCrontab

CHAPTER 2 AZURE FUNCTIONS PROGRAMMING

Notice that you can set the schedule with a simple or a complicated
expression.

Creating a Timer-Based Function

Now that you understand how CRON expressions work, let’s start creating
a timer-based function. To do that, you can use either the quickstart or the
template option, as discussed earlier in this chapter.

Figure 2-13 shows how to create a timer trigger function by using the
template option.

@ Timer trigger

New Function

T
Figure 2-13. Creating a timer-based function

Give the function a name and define the schedule based on a CRON
expression, which you learned about earlier. As you can tell, the template
autogenerates 0 */5 * * * *inthe Schedule box, which means run the
function every five minutes. Change the expression to */10 * % * % % to run
this function every ten seconds.

Click Create; then the code editor screen will be shown. Expand the
bottom section to display the log (see Figure 2-14).

36

CHAPTER 2 AZURE FUNCTIONS PROGRAMMING

1 using System;
2

i public static void Run(TimerInfo myTimer, ILogger log)

2019-01-22T0B:06:

4 {
5 log.LogInformation($"C# Timer trigger function executed at: {DateTime.Now}");
6 }
7
v Llogs Console & Reconnect [Q1Copy logs Il Pause @ Clear
L —

[Information] c® Timer trigger function executed at: 1/22/2019 8:06:20 am

4 [Information] Executing 'Functions.TimerTriggerl®' (Reason="Timer fired at 2019-01
59d-980f-4505-8ced ad9cdfial)

] c# Timer trigger function executed at: 1/22/2019 8:06:30 aMm

ion] Executed 'Functions.TimerTriggerl' (Succeeded, Id=3c971594-38

d at: 1/22/2019 8:06:40 am

* (Reasons'Timer fired at 2019-01-

" Expand

[Information] Executed 'Functions.TimerTriggerl' (Succeeded, Id=3te0Sdef=7ed0-4aa6-9dob-

009 [o t merTrigg (succeeded, Id=T9085d8a=87d5-4769-baf4

Figure 2-14. Logs in timer-based trigger function

The provided sample code just performs logging with a description
of “C# Timer trigger function executed on TIME,” on the schedule you

defined earlier, which is every ten seconds.

Exploring Use Cases for Timer-Based Functions

Timer-based functions are useful for use cases such as the following:

o Clearing temporary or log tables on a certain frequency

Performing calculations or processing information

°
from a master table and outputting to a calculated or
summary table

e Sending a report e-mail at the end of every month

37

CHAPTER 2 AZURE FUNCTIONS PROGRAMMING

Messaging with the Azure Service Bus
Queue Trigger Template

The asynchronous architecture of Azure Functions enables developers to
create more robust solutions without having to be online all the time. As a
matter of fact, in today world, many factors such as network and hardware
are considered unreliable.

Therefore, you should design resilient solutions that can self-recover
when an unexpected event occurs. Messaging and queuing systems play
an important part in this architecture.

Azure Functions provides several varieties of this template including
the following:

o Azure Queue Storage Trigger

e Azure Service Bus Queue Trigger
e Azure Service Bus Topic Trigger
e Azure Blob Storage Trigger

o Azure Event Hub Trigger

e Azure Cosmos DB Trigger

Although each of these templates uses different Azure services, the
concept of a trigger is similar in each template: when an item (which could
be a message, a blob, or a record) appears, trigger the function.

In this section, you'll learn how to use the Azure Service Bus queue
with Azure Functions. Azure Service Bus offers reliable cloud-based
messaging as a service. The two main capabilities are queues (for FIFO
message delivery from a producer to one or more competing consumers)
and topics/subscriptions (for the publish/subscribe model).

38

CHAPTER 2 AZURE FUNCTIONS PROGRAMMING

Let’s learn more about how to integrate the Azure Service Bus queue
with Azure Functions. Take the following scenario as an example:

e Anew sales order is added into a queue.

e The new sales order will be processed by the Azure
Functions function.

¢ A notification e-mail will be sent once the sales order is
processed.

Creating an Azure Service Bus

First, you'll need to create a service bus namespace, which is a scoping
container for Azure’s messaging component.

To do that, click the “+ Create a resource” button in the left menu of the
Azure portal (https://portal.azure.com); then type Service Bus, click
Create, and fill in the details, as shown in Figure 2-15.

[: wapac
e ¥ Service Bus & ¥ " Create namespace] >
x
Popular
G n Windurs Server 2916 VM
cortly erated 7
Comy Ubunty Server 18.04 VM %
Hetwarong
Sharage Web Asp = -
Wb i ——
Moksle
E SQU Dutabase T
Dan
Serverbens Funetsen App
A sarvin
vnosrrert of Things PO o OO -
rtegration
m Kisbernetes Service
ql DeeOien, Project
ot envce (5225 P PR Microach
o D i '

Figure 2-15. Creating an Azure Service Bus namespace

39

https://portal.azure.com

CHAPTER 2 AZURE FUNCTIONS PROGRAMMING

Once the Azure Service Bus namespace is created, you'll need to create
a queue. To do that, click + Queue and fill in the queue name and details
(Figure 2-16). In our example, the Azure Service Bus namespace is called
practicalazurefunctionssb, and we named the queue order. You can
leave the other fields (such as “Max queue size,” etc.) at their defaults.

"= practicalazurefunctionssb

Figure 2-16. Creating an Azure Service Bus queue

The next step is for you to send a message to the order queue. To do
that, you can do either of the following:

o Use the Azure Service Bus Explorer tools: https://
github.com/paolosalvatori/ServiceBusExplorer/
releases.

e Use the Service Bus SDK. This example shows a .NET
SDK: https://docs.microsoft.com/en-us/azure/
service-bus-messaging/service-bus-dotnet-get-
started-with-queues#fsend-messages-to-the-queue.

40

https://github.com/paolosalvatori/ServiceBusExplorer/releases
https://github.com/paolosalvatori/ServiceBusExplorer/releases
https://github.com/paolosalvatori/ServiceBusExplorer/releases
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-get-started-with-queues#send-messages-to-the-queue
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-get-started-with-queues#send-messages-to-the-queue
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-get-started-with-queues#send-messages-to-the-queue

CHAPTER 2 AZURE FUNCTIONS PROGRAMMING

Figure 2-17 shows how to use the Service Bus Explorer tool to enqueue
the message “10 unit of Surface Laptop.”

o
Fle [Ao Vew Help

L L
R ————
G Desirpton | usonzsbon Fules |
& om0
Rt Filaten L Das Ham Moss Seconh M
T vt e - P - ; " [l -’::

|
APt | g sand mestager 1o et - 0 X

Fie Bt Veew Help

]

Messagn | Sereier | Geashh fosaga e 0
.

Massage | Fien | Ganarater . o Cet

Figure 2-17. Service Bus Explorer tool

Creating an Azure Functions Function
with a Service Bus Queue Trigger

Click the + button and choose “Azure Service Bus Queue trigger” for the
template (Figure 2-18). If you get a warning message indicating that the
extension isn’t installed, just click Install and wait for a few moments.

41

CHAPTER 2 AZURE FUNCTIONS PROGRAMMING

practicalazurefunctions

@ Timer trigger ﬂ Azure Queus Storage trigger

A bunction thal will be un o 8 specilied schedube A Rancticen that will be un whrever 8 mesioge & sdded 1o
 specfied Arure Storage que

A function that wil be sun whenever 8 messsge is added 1o A furction that will be run whenever a message ts added 10
8 spechond Senvce Bus queve he specifed Serice But Topse

» f HitpTriggerd

w f TimerTrigger
Azure Blob Storage trigger E Azure Event Hub trigger
¥ Integrate
A et t il b rury o .

O Manage A function that wil be run whenever 3 biok i added 19 3 faction thy Frerarves an event bk receres
speciled container & nw eveet
P nniens

Figure 2-18. Creating an Azure Service Bus queue trigger function

Subsequently, you will need to fill in the details for the Azure Service
Bus details (Figure 2-19). Follow these steps:

1. Name your function. As you can see, the default
name is ServiceBusQueueTriggerl.

2. It’simportant to determine which Azure Service Bus
account to use. As such, click New and browse to the
Azure Service Bus namespace you created earlier;
then click Select. In the event your service bus is in
a different Azure subscription, you should choose
Custom.

3. For the queue name, make sure you enter the queue
name you created earlier. In this case, ours is called
order. Then click Create.

42

CHAPTER 2 AZURE FUNCTIONS PROGRAMMING

Figure 2-19. Filling in the details of the Azure Service Bus queue
trigger function

After a few moments, you will see that the function is successfully
created, and you will be routed to the code editor page with run.csx open.
Expand the bottom log section and take a closer look at the log message, as
shown in Figure 2-20.

run.csx Save P Run

using System;
using System.Threading.Tasks;

1
2
3
4 public static void Run(string myQueueltem, ILogger log) =
5
6 log.LogInformation($"C# ServiceBus queue trigger function processed message: {myQueueltem}”);

7

8

v Llogs Console S Reconnect [Copylogs WMPause @ Clear o Expand
—

message detected on ‘order’.", Id=fbae8105-8b91-4447-842F-5303793bF80a) -

2019-01-23T05:54:30.670 [Information] C# ServiceBus queue trigger function processed message: <?xml version="1.0"
encoding="utf—§" 2

«amessage>10 Units of Surface Laptops</messages

2019-01-23TOSTSATIV. 679 [INTOrmation] Executed 'Functions.ServiceBusQueueTriggerl® (Succeeded, Id=fbaeS105-8b91-
4447-842f-5303793bf80a)

IMG-M-2ATNS+SH-11 AR? [Tnfarmarian] Evariting "Eunrtinane SaruvicasfneNussaTrinnsrl’ (Qaseans "Thie Funrtian wae

Figure 2-20. Logs in the Azure Service Bus queue trigger function

43

CHAPTER 2 AZURE FUNCTIONS PROGRAMMING

Preparing SendGrid

SendGrid is a popular e-mail service provider. To register for a free trial
account, go to https://sendgrid.com/free/.

Once you have a SendGrid account, create an API key (Figure 2-21),
making note of it and securing it properly as you may not want to view it

again for security reasons.

S APl Keys m

Figure 2-21. Creating API keys in SendGrid

Adding an E-mail Address as an Output Binding

Navigate to the Integrate menu under your Azure Service Bus queue
trigger function, click + New Output, and select SendGrid. Select the

“Use function return value” check box and fill in e-mail addresses in the
“from address” and “to address” boxes (Figure 2-22). In the SendGrid

API Key App Setting field, click New and fill in the API key with the value
you copied in the previous section. You can leave “Message subject” and
Message Text empty as you will fill them in programmatically later in your
function code. Click Save to accept the changes.

44

https://sendgrid.com/free/

CHAPTER 2 AZURE FUNCTIONS PROGRAMMING

[Advanced editor

Triggers @ Inputs @ Qutputs @
Azure Service Bus (mymsg) o New Input SendGrid (Sreturn)
+ New Output
ut % d
Message parameter name & SendGrid AP Key App Setting @
Sretum
o U t tu I
om address @
To <5 O
Message Text @

Message subject @
Figure 2-22. SendGrid output binding

Updating the Azure Function Code

Navigate to your function code editor by clicking your function name; in
our case, this is ServiceBusQueueTriggerl. Replace the current code with
the code snippet in Listing 2-1 and click Save.

Listing 2-1. Sending E-mail with SendGrid When a Message Is
Enqueued

#r "SendGrid"

using System;

using System.Threading.Tasks;

using SendGrid.Helpers.Mail;

using Microsoft.Azure.WebJobs.Host;

45

CHAPTER 2 AZURE FUNCTIONS PROGRAMMING

public static SendGridMessage Run(string myQueueItem, ILogger log)
{

SendGridMessage message = new SendGridMessage()

{

Subject = "Order received on " + DateTime.Now.ToString()

};

message.AddContent("text/plain”, $"Hi there, we've received
your order. We'll let you know agian when your order is on
its way. Order: {myQueueItem}");

return message;

You started by importing SendGrid as an external library since it’s
not part of the standard .NET/C# library. Subsequently, you will have
four using directives including SendGrid.Helpers.Mail, as you'll be
using some of the class in your code. In the Run method, you then create
a SendGridMessage class and fill in the subject and message accordingly,
before returning the SendGrid’s message as a return value.

Testing the Service Bus Queue Trigger Function

Since this is an Azure Service Bus queue trigger function, you'll need to
enqueue a message in the Azure Service Bus queue. As discussed, you
can use either the Service Bus Explorer or the SDK to enqueue a message.
Figure 2-23 shows how we enqueued a message containing “4 Unit of
Surface Book 2” with the Service Bus Explorer.

46

CHAPTER 2 AZURE FUNCTIONS PROGRAMMING

b""
o
Fan
P
"
2
v
3 1
2
 C—— ‘
' vy]
~ |
& Ledt of Surface Bock 4 o= sy g
- - : =
Setfles | Cesfies || Open S || Owe L
AN The agLicenion
et 10:37:20 Sanser(o]: i
A nr;:-nun::::! = Mazmsge Coumem(l] Meszages Sent/Sacwld. AIESATTIIN180] Tomal Tlspasd Time (maie(181]
> The onder - Averege Send Time mal=(i53] Hinimem Cend Time I-! [ak3) Hamamem Send Time (ma)=) Lak3]
» The ractries CANITII0E> Fenden|0]: Hassage seal b FLTEE PO il 1 e Emplocer] #am
ww ! 18:38:08> Seader(0]: L
The ¥ e = Hessage Coust=(1] Hesseges Sens/Bec=(27 0% sc:m D“] Total Elapsed Tize (mai=[37)
The quess srder = Arsrees Eswd Time ims)=f37] Misims Send 7 =371 Maximen Swnd Time (mal=f3?! A
The queus srder %
 Tha quua codue
» The guece codes

Figure 2-23. Sending a message in the Service Bus Explorer

Before hitting the Start button, navigate back to your Azure portal,

particularly the function code editor that is displaying run.csx. Expand the

Log section at the bottom.

Go back to your Service Bus Explorer and hit the Start button to start

the enqueue. Immediately, navigate back to your Azure portal and notice

the log. If everything works well, you should see the logs, as shown in

Figure 2-24.

47

CHAPTER 2 AZURE FUNCTIONS PROGRAMMING

1 #r "SendGrid"

? using System;

3 using System.Threading.Tasks;

4 using SendGrid.Helpers.Mail;

5 using Microsoft.Azure.Weblobs Host;
6

7 public static SendGridMessage Run{string myQueueltem, ILogger log)

8 {
9 SendGridMessage message = new SendGridMessage()
18 {
11 Subject = “Order received on * + DateTime.Mow.ToString()
12
13
14 message. AddContent(“text/plain”, $"Hi there, we've received your order. We'll let you know agian when your order
15
16 return message;
17 }
v {logs: Console X Reconnect (D Copylogs W Pause @ Clear * Expand
—
2019-01-26T11:20:39 welcome, you are now connected to log-streaming service. =
2019 2 2 026 [1 1 Executi Functions.ServiceBusQueueTriggerl’ (Reasons'New ServiceBus sessage detected
on “orde 2ef7 096 3d)
20190 Functions.ServiceBusqueueTriggerl’ (Succeeded, Tde7aZef7c6-4305-4cf7-badd

c3cd5780963d)

Figure 2-24. Testing the queue trigger function

At the same time, you may receive an e-mail notification at the e-mail
address you defined earlier, indicating that your order is being processed
(see Figure 2-25).

Order received on 1/26/2019 11:19:50 AM inbox % & =

g senc grid infa TASPM (2 minutes aga) YT 4

Hi thare, wa've teceived your order, We'll ket you know agian when your order is on iss way, Order: 4 Unit of Surface Book 2

1f you'd ke i unsubscribe and siop recehving these emalls click here.

. Reply » Forward

Figure 2-25. E-mail sent from SendGrid output trigger

48

CHAPTER 2 AZURE FUNCTIONS PROGRAMMING

Summary

In this chapter, you started by learning about the core Azure Functions
programming model, and then you learned how to create a function
from the quickstart or a template. You then moved on to several popular
scenarios of Azure Functions including Webhook + API, timer-based
functions, and finally the queue trigger functions.

49

CHAPTER 3

Accessing Data from
Azure Functions

In the previous chapter, you learned about the programming model used
in Azure Functions and saw a few popular templates. While most of the
examples were done with C# Script directly in the Azure portal, in this
chapter you will dive deeper into how to access Azure SQL Database in
Azure Functions through Visual Studio 2019.

Overview of Azure SQL Database

Azure SQL Database (aka SQL Azure) is a platform-as-a-service (PaaS)
relational database offered by Azure. The core engine of Azure SQL
Database is based on SQL Server. The unique feature of the SQL database
is that it is self-managed. In other words, the platform takes care of many
tasks such as provisioning the server, installing the SQL Server software,
setting up for high availability, and so much more. This allows developers
to focus on building applications and allows database administrators
(DBASs) to focus on tuning queries.

In 2018, Azure also released three similar managed databases, namely,
Azure Database for MySQL, Azure Database for PostgreSQL, and Azure
Database for MariaDB.

© Agus Kurniawan, Wely Lau 2019 51
A. Kurniawan and W. Lau, Practical Azure Functions,
https://doi.org/10.1007/978-1-4842-5067-9_3

CHAPTER 3 ACCESSING DATA FROM AZURE FUNCTIONS

Using Visual Studio 2019

Let’s start by opening Visual Studio 2019. We encourage you to upgrade to
the latest version if you haven’t. You can do this by clicking the notification
(flag) icon at the top right of Visual Studio 2019.

To start, select File » New Project. Enter function in the search bar,
and you will see the Azure Functions project template. Click Next and fill
in the project name, location, and solution name, as shown in Figure 3-1.
Click Create to proceed.

Configure your new project

Azure Functions ¢

Figure 3-1. Azure Functions template in Visual Studio

52

CHAPTER 3 ACCESSING DATA FROM AZURE FUNCTIONS

You'll then be asked for the function version (use version 1 with the
.NET Framework or version 2 with .NET Standard/.NET Core). Let’s
choose Azure Function v2 and select “Http trigger,” as shown in Figure 3-2.
You can leave the options of Storage Account and “Access rights” at their
default values. Click OK.

New Project - FunctionApp1

Azure Functi JET Caore)

Blob trigger

Access
HY
E L Function

Http trigger [oT Hub trigger

Figure 3-2. Http trigger in Visual Studio function template

You will notice that Visual Studio generates some template code for
getting started (Figure 3-3). Click Run or press F5 to run it.

53

CHAPTER 3 ACCESSING DATA FROM AZURE FUNCTIONS

icrosoft. AspNetCore.Mvc;
icrosoft.Azure.WebJobs;
Microsoft.Azure.WebJobs.Extensions.Http;
Micresoft.AspNetCore.Http;

; Microsoft.Extensions.Logging;

: Newtonsoft.Json;

: PracticalAzureFunctionsCh3

static class Functionl
i [FunctionNase(“Functionl®)]

1 | I atic async Task<IActionResult> Run(
178 | [HttpTrigger(AuthorizationLevel.Function, “get]’, “post”, Route = null)] HttpRequest req,
=] ILogger log)

log. LogInformation(“C# HTTP trigger function processed a request.”);

string name = req.Query[“name"];

new Streamfeader(req.Body).ReadToEndAsync();
-DeserializeObject({requestBody);

string requestBody = a
dy ic data = JsonCon
name = nama ?? data’.name;

Figure 3-3. Visual Studio-autogenerated code in Azure Functions

You will notice that another console window shows up with some logs
generated. Pay attention to the localhost URL, as highlighted in Figure 3-4.

54

CHAPTER 3 ACCESSING DATA FROM AZURE FUNCTIONS

n L
[2/12/2019 11:24:53 AM] "LockAcquisitionTimeout™: “10675199.82:48:85.4775887", -
[2/12/2019 11:24:53 AM] "LockAcquisitionPollingInterval™: “"8@:88:05%,

[2/12/2019 11:24:53 AM] "ListenerLockRecoveryPollingInterval™: "8@:01:88"

[2/12/2019 11:24:53 AM] }

[2/12/2019 11:24:53 AM] Starting JobHost

[2/12/2019 11:24:53 AM] Starting Host (Hostld=minintpclOup7-9@3726221, Instanceld=14288306-7f1d-4d45-9fd4-93311f02e988,
version=2.9.12285.8, ProcessId=37384, Ap inld=1, InDebugMode=False, InDiagnosticMode=False, FunctionsExtensienVersio
n=)

[2/12/2019 11:24:53 AM] Loading functions metadata

[2/12/2019 11:24:53 AM] 1 functions loaded

[2/12/2019 11:24:53 AM] WorkerRuntime: dotnet. Will shutdown other standby channels
[2/12/2019 11:24:53 AM] Generating 1 job function(s)

[2/12/2019 11:24:53 AM] Found the following functions:

[2/12/2019 11:24:53 AM] PracticalAzureFunctionsCh3.Functionl.Run

[2/12/2019 11:24:53 AM]

[2/12/2019 11:24:53 AM] Host initialized (428ms)

[2/12/2019 11:24:53 AM] Host started (434ms)

[2/12/2019 11:24:53 AM] Job host started

4osting environment: Producticn

Content root path: C:\Users\welyl\source\repos\PracticalAzureFunctions\PracticalAzureFunctionsCh3\bin\Debug\netcoreapp2.
1

Now listening on: http://8.8.8.8:7871

application started. Press Ctrl+C to shut down.

4ttp Functions:
Functionl: [GET,POST] |http://localhost:7871/apl/Functionl

[2/12/2019 11:24:59 AM] Host lock lease acquired by instance ID ° I9FOA" .

Figure 3-4. Running an Azure Functions function locally

Paste the URL into a browser and append Zname=Azure at the end of
the URL. If everything goes well, you should see “Hello, Azure” displayed
in the browser.

As you can tell from the URL, your Azure Functions function now runs
locally.

The following are the two main advantages of developing this locally
over developing it directly on the cloud (through the Azure portal):

o With a powerful integrated development environment
(IDE) like Visual Studio (or an editor like Visual Studio
Code), the experience of authoring, testing, and
debugging code is more convenient.

e When you work in an environment that does not have
Internet access, you can continue writing your code
and deploy it later when you have Internet access.

55

CHAPTER 3 ACCESSING DATA FROM AZURE FUNCTIONS

Coming back to the main topic of dealing with relational data in the
SQL database, what you are going to do next is record every single HTTP
request detail (such as message, client IP address, timestamp) to a SQL
database table.

Creating Your SQL Database

Using Figure 3-5, create a SQL database on the Azure portal (https://
portal.azure.com) by clicking the “+ Create a resource” button in the left
menu; then choose Databases and SQL Database. Choose the appropriate
subscription and resource group. Provide the database name as well. For
the server, click “Create new” if you don’t have an existing server.

< Create SOL Database

ﬂ e S0L Managed leatance
w it gy resices
QR Duts Warehouse
donart ” o
Chouders Cort0S 75
71 DA SRS

' . Hlantt Stack « Elaticunareh, Gibana

@F v :
E Agure Datsbase for MySQL o
E Agurs Datsbas for PoisgreSOL " > " v (®) b

. . i L] Genarsd Prrpase
Aqurs Cosmos D8 s

€4, Sorver 017 Enterprine
Wirdkcnms Sereer 1016 [s e B =

Figure 3-5. Creating a SQL database

The “New server” blade will appear (as shown in Figure 3-6). Fill in
the details such as the server name, admin login, password, and location
accordingly. Make sure you remember the username and password as
you’ll be using them in later steps.

56

https://portal.azure.com
https://portal.azure.com

CHAPTER 3 ACCESSING DATA FROM AZURE FUNCTIONS

New server X

.database windows.net

Southeast Asia v

+'| Allow Azure services to access server @

Figure 3-6. Creating the Azure SQL Database server

The server in this context represents a virtual server, which you will
connect to from your client app. You can also control the firewall to
determine which IP addresses can connect to the server.

Coming back to the main “Create SQL Database” blade, you will see
the “Elastic pool” option. An elastic pool in Azure SQL Database allows the
user to create multiple databases while sharing a set number of resources
at a set price. As you're not going to use this now, simply leave the “Elastic
pool” option set to No, as shown in Figure 3-7.

57

CHAPTER 3 ACCESSING DATA FROM AZURE FUNCTIONS

Create SOL Database

ﬂ Azure S0 Managed istance

508 Data Wasehouse

! Closadora ComiCis 7.5

’._‘ and Logstash 2

H Asure Dotabiace her MySQL el]

" Pl
-

E Azurs Cosmas D8

S04 Server 2017 Emineprive

Moo s 208 I [

Chaasic Stack - Dasticsearch, Kibara

Figure 3-7. Creating a SQL database

For the “Compute + storage” option, choose “Configure database.”
Notice that another blade opens showing the details of the database
configuration and size for various types of workloads such as Basic,
Standard, and Premium. Each of the database’s sizes is powered by a
machine with a different set of configurations (vCPU, RAM, and IOPS).
See Figure 3-8.

58

CHAPTER 3 ACCESSING DATA FROM AZURE FUNCTIONS

e 7 SOL detsbases » Craste SOL Databa

wCore based purchasing opticns
Chick hvere 10 castsmise your performuance uing

Data man size

100 ME ik

Figure 3-8. Choosing the Azure SQL Database size

Since this function is for demo purposes only, let’s pick the most
economical option by selecting Basic. You can increase the minimum
database size from 100MB to 250GB. Click Apply. See Figure 3-9.

59

CHAPTER 3 ACCESSING DATA FROM AZURE FUNCTIONS

Configure »

W Feedback

"1 Standard Premium
1 Formerinds with Typical pardormanos NouiNt i 13-t ity vCore-based purchasing optiens
Click here to customize your perons

DTUs Wht o 1
5 (Basic) —
Data max size @

100 M8 268

[¥ x5

TR €O # MM T 499 v

Figure 3-9. Choosing the basic size

Go back to the “Create SQL Database” blade again and click Review
+ Create and then Create to complete the creation process. It will take
several minutes to create the database.

Once the database has been created, you will be able to explore and
perform further configuration later.

Configuring a Firewall for a SQL Database
Server

Another thing you need to do is to configure the firewall to allow access to
a particular client IP address. The Client IP Firewall is a built-in feature in
Azure SQL Database to enhance security, in addition to providing access
with the username and password. Think about the scenario where your
username and password are lost accidentally. With this feature, you still
can restrict which IP address(es) can access your database.

60

CHAPTER 3 ACCESSING DATA FROM AZURE FUNCTIONS

To do that (as shown in Figure 3-10), click the server name of the Azure
SQL server; then scroll in the left menu and click “Firewalls and virtual
networks.” Click the “+ Add client IP” option, and you'll notice that the rule
name and the client IPs (starting and ending) will automatically be filled
in. You can put the same value in the START IP and END IP fields, or you
can enter a range.

g practicalfunctionserver - Firewalls and virtual networks

& Manage Backups
? P Connections from the IPs specified below provides access to all the databases in

. 2 practicalfunctionserver.
o Active Directory admin
B SOl databases Allow access to Azure services
@ saL elastic pools OFF |
0 Deleted databases LNty chirass. FTRINAR 11

=+ Import/Export history RULE NAME START 1P END 1P

DTU quota
' Properties s

ClientiPAddress_2019-2-" 126.88.48.0 W 126.88.48.255 vl .
n Locks
ER Automation script Connections from the VNET/Subnet specified below provides access to all databases in
practicalfunctionsenver.

Security
@ Advanced Data Security Virtual networks + Add existing virtual network + Create new virtual network
B Auditing RULE NAME VIRTUAL NETWORK SUBNET ADDRESS RANGE ENDPOINT STATUS

O Firewalls and virtual networks No wnet rules for this server,

0 Transparent data encryption

Figure 3-10. Adding a client IP in the SQL Server firewall settings

Connecting Azure SQL Database with SQL
Server Management Studio

Since Azure SQL Database is a managed Paa$ version of SQL Server, you
can use the same tool that you use for the on-premise SQL Server, namely,
SQL Server Management Studio.

61

CHAPTER 3 ACCESSING DATA FROM AZURE FUNCTIONS

You can download and install SQL Management Studio (SSMS) from
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-
management-studio-ssms?view=sql-server-2017. Currently, SSMS 17.9.1
is the latest General Availability (GA) version.

Before accessing Azure SQL Database from SSMS, you will need to take
note of the connection string of Azure SQL Database in the Azure portal.
To do that, click the “Connection strings” menu in the SQL Database blade,
as shown as Figure 3-11. Depending on the type of your client app, you
can choose ADO.NET, JDBC, ODBC, etc., accordingly. Notice that your
username and password are not displayed because of security reasons.

? practicalfunctiondb {practicalfy i [practicalfunctiondb) - Connecticon strings

ADOMNET JOB eHp

ADOMET (501 suthent

e
-]

. Sarverd B database windon: net 1441 3l Catalog e practcal , cUser 1D= e
® T OUr_pasmwondiMubp eActveRes st - Fe b norypts True Instienaelerttcates Falseonnachon Timeout= 10
E
&

Figure 3-11. Getting Azure SQL Database’s connection string

Upon the installation, click File » Connect to object explorer.
1. Leave the “Server type” option set to Database Engine.

2. Enter the server name you created earlier (or you can
get it from the connection string in Figure 3-12). The
server name should end with the suffix .database.
windows.net.

3. Choose SQL Server Authentication for the
Authentication option.

4. Enter the login and password that you defined earlier.

62

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
http://database.windows.net
http://database.windows.net

CHAPTER 3 ACCESSING DATA FROM AZURE FUNCTIONS

Q.I Connect to Server

SQL Server

Database Engine

] *database windows net

SQL Server Authentication

Figure 3-12. Connecting to Azure SQL Database from SQL Server
Management Studio

The next step is to implicitly choose the database to which you want to
connect. To do that, click the Options >> button and fill in the “Connect to
database” field with the database name you defined earlier. Finally, click
Connect. See Figure 3-13.

63

CHAPTER 3 ACCESSING DATA FROM AZURE FUNCTIONS

¥ Connect to Server X

SQL Server

Login Connection Properties Addttional Connection Parameters
Type or select the name of the database for the connection.

Connect to database: v
Network

Network protocol: <default> v

MNetwork packet size: 4056 ls)| bytes
Connection

Connection time-out: 30 12| seconds

Execution time-out: 0 |/ seconds

[[] Encrypt connection

[] Trust server certificate

(] Use custom color: l:’ Select

Beset All
Cancel Help Options <<

Figure 3-13. Connection Properties tab

If all the details are filled in correctly, you should be able to see the SQL

database displayed in the Object Explorer, as shown in Figure 3-14.

64

CHAPTER 3 ACCESSING DATA FROM AZURE FUNCTIONS

{5 i = W® | B NewQuery J8 57
Object Explorer -0 x
Connect~ ¥ ¥ &
1] et— 122 i

Databases
Systemn Databases

W practicalfunctiondb
Database Diagrams
Tables
Views
External Resources
Synonyms
Programmability

E Query Store

% [F] Extended Events
Storage
Security

Figure 3-14. Azure SQL Database and its objects in the Object Explorer

If you encounter an error message indicating that your client IP

address doesn’t have access to the server, as shown in Figure 3-15, please

revisit the “section 3.5” to configure the firewall correctly. Alternatively,

you can click Sign In and add the firewall directly from SQL Server

Management Studio.

Figure 3-15. Adding a firewall rule from SQL Server Management

Studio

| Tn
| g

New Firewall Rule X

Your cent IP address does not have access to the server. Signinto |—
an Azure account and create a new firewall ule to enable access.

Azure account
You are not signed in to Microsoft Azure

65

CHAPTER 3 ACCESSING DATA FROM AZURE FUNCTIONS

As you're planning to store every single request on the Azure function
in a SQL database, you'll learn how to create a table now. To do that,
expand the database you created earlier, right-click Tables, and choose
New » Table. See Figure 3-16.

42 Microsoft SQL Server Management Studio
File Edit View Debug Tools Window Help
i 1‘13 > = # i’m New Query Ug -’3 [:ﬁ nﬁ |

Object Explorer > 0 x

Connect~ ¥ *¥ Y&

= _J B Ldatabase.windows.net (SQL Server 12.0.2000.8 - w
Databases

¥ System Databases
= W@ practicalfunctiondb

| Database Diagrams
Tt New » Table...
£ | Filter » Memeory Optimized Table...
5-*— i ﬁ Temporal Table
[ors
= ;ﬁ | f Graph Table
+ eV
5 Exbers Seties External Table...
+ Synonyms
3 Programmability
Query Store
@ [¥] Extended Events
3} Storage
® B Security

Figure 3-16. Creating a table from Management Studio

Define the table column with the details provided in Table 3-1.

66

CHAPTER 3 ACCESSING DATA FROM AZURE FUNCTIONS

Table 3-1. Function Request Table

Column Name DataType Allow Nulls Remarks

Id Int No Set as the primary key. Set
Identity specification to Yes
(auto-increment). Leave ldentity
Increment and Seed set to 1.

ServerHost Nvarchar(50) No This is to record the function’s
server host.

ClientlPAddress Nvarchar(50) No This is to capture the client’s IP
address.

Message Nvarchar(50) No The message produced upon
entering the name parameter in the
querystring.

DateTime Datetime No

Save the table with a name of FunctionRequest.
You can also refer to the SQL Data Definition Language (DDL), as
shown in Listing 3-1, if you prefer to create a table from script.

Listing 3-1. Data Definition Language to Create the
FunctionRequest Table

CREATE TABLE [dbo].[FunctionRequest](
[Id] [int] IDENTITY(1,1) NOT NULL,
[ServerHost] [nvarchar](50) NOT NULL,
[ClientIPAddress] [nvarchar](50) NOT NULL,
[Message] [nvarchar](50) NOT NULL,
[DateTime] [datetime] NOT NULL,
CONSTRAINT [PK FunctionRequest] PRIMARY KEY CLUSTERED

(

67

CHAPTER 3 ACCESSING DATA FROM AZURE FUNCTIONS

[Id] ASC
YWITH (STATISTICS NORECOMPUTE = OFF, IGNORE_DUP KEY = OFF) ON
[PRIMARY]
) ON [PRIMARY]
GO

Configuring Azure Functions
in Visual Studio

In this section, you'll let Azure Function’s code interact with the SQL
database you created earlier.

Accessing the SQL database from Azure Functions is similar to when
using other project types such as ASP.NET Web/MVC, .NET Console, or
even a Windows Forms app.

Make sure you provide the right connection string in the local settings,
which eventually will be mapped to the application settings in the function
app. To do that, let’s go back to Visual Studio by right-clicking your project
and clicking Publish. Then, click Edit Azure App Service Settings. As shown
in Figure 3-17, once the Application Settings pop-up window appears, click
+ Add Setting and give the new app a name such as sqldb_connection;
then click OK. Notice that there are two values (Local and Remote). This
allows you to connect to a different database depending on where it’s
running. For example, it connects to the on-premise SQL Server as a local
one, while it connects to Azure SQL Database instance when it’s deployed
to the cloud (remote).

68

CHAPTER 3 ACCESSING DATA FROM AZURE FUNCTIONS

Figure 3-17. Application Settings pop-up in Visual Studio

In this case, you can paste in the value for both Local and Remote
from the Connection String menu (see the section 3.5). Make sure you've
updated the username and password accordingly. Then click OK. The local
value will be stored in the local.settings. json file, while the remote
value will eventually be stored as an application setting in the function app.

Since you are using C# with .NET Core, you need to add the necessary
libraries to access the SQL database, particularly in the System.Data.
SqlClient assembly. To do that, right-click the project and then choose
Manage NuGet Packages, as shown in Figure 3-18.

69

CHAPTER 3 ACCESSING DATA FROM AZURE FUNCTIONS

alAzureFunctionsCh3 Projec
L R

lisc

Figure 3-18. Adding NuGet packages to the project

Click the Browse menu, enter System.Data.SqlClient, and choose
the correct one, as shown in Figure 3-19. Change the version to the latest
stable version and click Install.

NuGet PractealAzureFunctiorsChia

System.Data.SqlClient @

7.System.Data.SqlClient

Figure 3-19. Adding the SQLClient library from NuGet

Click OK to preview the changes. Then click I Accept to accept the
license. You can verify whether the package was successfully installed by
clicking Dependencies » Nuget under the project.

70

CHAPTER 3 ACCESSING DATA FROM AZURE FUNCTIONS

Writing Azure Functions Code in VS

You have done the necessary configuration on your Visual Studio project.
The next step is to start coding.

You'll start by creating a class that represents the FunctionRequest table
in the SQL database. To do that, right-click the project and choose Add »
New Item. Make sure that you've selected Visual C# in the left menu, choose
Class, and then name the class FunctionRequest.cs. See Figure 3-20.

xtensions.Http;

refunctionsCh3 Project Properties

Figure 3-20. Adding a new item in Visual Studio

Add properties to the class, as shown in Listing 3-2.

71

CHAPTER 3 ACCESSING DATA FROM AZURE FUNCTIONS
Listing 3-2. Class for FunctionRequest
using System;

namespace PracticalAzureFunctionsCh3

{
public class FunctionRequest
{
public int Id { get; set; }
public string ServerHost { get; set; }
public string ClientIPAddress { get; set; }
public string Message { get; set; }
public DateTime { get; set; }
}
}

The next step is to update the function’s code. By default, a function
called Function1 was created when you created a function project in
Visual Studio. Modify the code to what is shown in Listing 3-3.

Listing 3-3. Function’s Main Code to Save to the Database

using System;

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;
using Microsoft.AspNetCore.Http;

using Microsoft.Extensions.Llogging;

using Newtonsoft.Json;

using System.Data.SqlClient;

72

CHAPTER 3 ACCESSING DATA FROM AZURE FUNCTIONS

namespace PracticalAzureFunctionsCh3

{

public static class Functioni
{
[FunctionName("Functioni")]
public static async Task<IActionResult> Run(
[HttpTrigger(AuthorizationLevel.Function, "get",
"post"”, Route = null)] HttpRequest req, ILogger log)

log.LogInformation("C# HTTP trigger function
processed a request.");

string name = req.Query["name"];

string requestBody = await new StreamReader(req.
Body) .ReadToEndAsync();

dynamic data = JsonConvert.DeserializeObject(reques
tBody);

name = name ?? data?.name;

FunctionRequest fr = new FunctionRequest();
fr.ServerHost = req.Host.ToString();
fr.ClientIPAddress = req.Headers["X-Forwarded-
For"].ToString();

fr.DateTime = DateTime.Now;

fr.Message = "Hello " + name;

if (name != null)

{
var str = Environment.
GetEnvironmentVariable("sqldb_connection");
try
{

73

CHAPTER 3 ACCESSING DATA FROM AZURE FUNCTIONS

74

using (SqlConnection conn = new
SqlConnection(str))
{
conn.Open();
var text = "INSERT INTO FunctionRequest
(ClientIPAddress, ServerHost, Message,
DateTime) VALUES (@clientipaddress,
@serverhost, @message, @datetime)";

using (SqlCommand cmd = new

SqlCommand(text, conn))

{
cmd.Parameters.AddWithValue
("@clientipaddress”,
fr.ClientIPAddress);
cmd.Parameters.AddWithValue
("@serverhost", fr.ServerHost);
cmd.Parameters.AddWithValue
("@message", fr.Message);
cmd.Parameters.AddWithValue
("@datetime", fr.DateTime);

var rows = await cmd.
ExecuteNonQueryAsync();

}

return (ActionResult)new
OkObjectResult($"Message: \"{fr.Message}\"
from Your IP Address: {fr.ClientIPAddress}
has been recorded on {fr.DateTime.
ToString()}");

CHAPTER 3 ACCESSING DATA FROM AZURE FUNCTIONS

catch (Exception ex)

{
return new BadRequestObjectResult("Some
error occurs. Message : " + ex.Message);
}
}
else
{
return new BadRequestObjectResult("Please pass
a name on the query string or in the request
body");
}

In Listing 3-3, you first created the object fr from the FunctionRequest
class and filled it with values from the function’s HttpRequest.
Subsequently, you retrieved the database connection string through
Environment.GetEnvironmentVariable("sqldb_connection") and
inserted the values into the database table. Finally, you displayed the
message as a return value to the UL

Running and Testing Azure Function Locally

You will build and run the Azure Functions function locally first before
deploying it to the cloud. To do that, click Debug » Start Debugging or
simply press F5. Similar to what was covered earlier, now you'll copy the
URL into the browser again and append ?name=LocalFunction. Then hit

Enter.

75

CHAPTER 3 ACCESSING DATA FROM AZURE FUNCTIONS

Because you're running Visual Studio, you can put a breakpoint
and debug over it. This will increase your development productivity
tremendously.

If everything goes well, you should see a message like “Message: ‘Hello
LocalFunction’ from Your IP Address: has been recorded on 2/19/2019
2:58:15 PM.” You will notice that Client IP Address is empty. This is because
HttpRequest’s Headers["X-Forwarded-For"] doesn’t apply when running
locally. Verify your database table if you can find the new record that was
just entered.

Deploying to Azure Functions

Once you'll all set locally, the next step is to deploy the function to the
cloud and to verify whether it works as expected. To do that, go back to
Visual Studio, right-click your project, and click Publish. You can either
choose to deploy to a newly created function app or select an existing one
(see Figure 3-21).

Pick a publish target

| Azure A

Figure 3-21. Publishing to Azure Functions from Visual Studio

76

CHAPTER 3 ACCESSING DATA FROM AZURE FUNCTIONS

In our case, we like to deploy to a new one; as such, choose the Create
New option and click Publish.

You will need to authenticate with your Azure credentials from Visual
Studio if you haven’t done so. As shown in Figure 3-22, the subscription
will show accordingly, and you can decide if you'd like to create this new
function app as part of an existing resource group or to create it in a new
resource group. Similarly, this applies to the hosting plan as well as the
storage account. Then click Create.

Rl ___§
ost web and mobile ap s, REST APls, and more in Azure

Explore additional Azure services

Clicking the Create button will create the following Azure
resources

Cancel

Figure 3-22. Creating a new function app from Visual Studio

It will take a few moments to validate and deploy.

77

CHAPTER 3 ACCESSING DATA FROM AZURE FUNCTIONS

You may encounter the dialog box shown in Figure 3-23. This happens
because the default version of Azure Functions in Azure Cloud is 1.0 (.NET
Framework) if you chose 2.0 (.NET Core) during the project creation in
Visual Studio. Choosing Yes will allow Visual Studio to update the version
of Azure Functions in Azure Cloud to 2.0 (.NET Core).

o Update Functions Version on Azure

The remote Azure Functions runtime version needs to be updated in
order for this project to run successfully in Azure. Updating the
runtime version may cause any existing functions on that site to stop
working.

Automatically update the remote Azure Functions version and
continue to publish?

Figure 3-23. Updating the Azure Functions version

Running and Testing Function Apps
in the Cloud

Once the deployment has been successfully completed, navigate to the
Azure portal and browse your function apps.

Before running the application, let’s examine if the application
setting for the SQL database’s connection string has been successfully
stored. To do that, navigate to your function app’s Overview tab. Click the
“Application settings” link. Then scroll further down until you discover the
“Application settings” section, as shown as Figure 3-24. You can also click it
to verify whether the value has been entered correctly.

78

CHAPTER 3 ACCESSING DATA FROM AZURE FUNCTIONS

Application settings

@ \Pricotion Settings are encrypted sl rest and tranemitied over an encaypeed channal. Vou can chocse o caplay them in plsin estin your bewses by using the conirols
below:

APP SETTING NAME VALUE SLOT SETTING DELETE

AzureWeblobsDashbosrd Hodden value. Click to edit x

AzureWebiobiStorage Hudden velue. Click to edit.
FUNCTIONS_EXTENSHON_VERSION Hudders valie. Click to edit. 3
l sqklb_connection Hidden value. Click to edi x I

WEBSITE_CONTENTAZUREFILECONNECTL. Hudden value. Click fo edit.

WEBSITE_CONTENTSHARE Hidden velue. Click to edit. x

Figure 3-24. Azure Functions application settings

Let’s test if the function can be run properly. Like what you did earlier,
perform the same steps, except use the Azure Functions public URL.

If it goes well, you should see a message such as “Message: ‘Hello
Azure Functions’ from Your IP Address: 111.222.111.222:12345 has been
recorded on 2/24/2019 10:59:57 AM.” You can also verify if a new record
has been saved to your database table.

Summary

You started this chapter by getting an overview of Azure SQL Database,
the PaaS relational database service in Azure. You then created and
configured an Azure SQL Database instance in Azure. Subsequently, you
used Visual Studio 2019 as an IDE to write the code that interacts with the
SQL database. Finally, you tested on the local machine as well as on Azure
Cloud.

You'll learn about NoSQL and Azure Functions in the upcoming chapter.

79

CHAPTER 4

Accessing Cosmos
DB in Azure Functions

NoSQL databases have been extremely popular in recent years. In this
chapter, you will learn how to access Cosmos DB, the primary NoSQL
database in Azure Functions.

Introduction to NoSQL Databases and Azure
Cosmos DB

The term NoSQL refers to database systems that store data in a wider
variety of data models than relational databases such as documents, key-
value pairs, or graphs. This is a different concept than the conventional
relational database management system (RDBMS) used in the SQL Server,
Oracle, and MySQL databases that have been around for decades.

Though it’s not mandatory, NoSQL databases are often deployed in
distributed nodes across multiple partitions rather than in single-instance
deployments.

There are several major reasons why NoSQL has gotten more popular
in recent years including scalability, performance, and flexibility. Unlike
an RDBMS, which typically scales vertically (by adding hardware such as
CPU or memory) to the server, NoSQL scales horizontally across multiple

Servers.

© Agus Kurniawan, Wely Lau 2019 81
A. Kurniawan and W. Lau, Practical Azure Functions,
https://doi.org/10.1007/978-1-4842-5067-9_4

CHAPTER 4 ACCESSING COSMOS DB IN AZURE FUNCTIONS

Azure Cosmos DB is an evolution of a document-based database
engine known as Azure Document DB. Several attributes make Azure
Cosmos DB a unique NoSQL database.

¢ Multimodel and multi-API: Azure Cosmos DB
provides different models and APIs including SQL
(core), MongoDB, Cassandra, Azure Tables, and
Gremlin (Graph). This means an application can access
a Cosmos DB just like accessing another MongoDB
database with the same connection string format, as
shown in Figure 4-1.

mongodb://mongodb0.example.com:27017/admin

?m::; MongoDB
Cosmos DB \ Application
Core
Engine
Table API Cassandra

Figure 4-1. Multi-API in Azure Cosmos DB

o Globally distributed: You can deploy the Cosmos DB
databases across the globe easily with just a few clicks
in the Azure portal, as shown in Figure 4-2, or a few
commands through the command line.

82

CHAPTER 4 ACCESSING COSMOS DB IN AZURE FUNCTIONS

.H Save ' Discard
Click on a location to add or remove regions from your Azure Cosmos DB account Configure regions
Enable multi-region writes @
* Each region is billable based on the throughput and storage for the account. Learn more m =
Configure the regions available for reac
+ Add region
WRITE REGION
e Southeast Asia
8 8P i
ki joto! READ REGIONS
® L0
i) &
$ = East US
o West Europe

@
®

Figure 4-2. Globally distributed NoSQL database

¢ Throughput, consistency, and latency SLA in
addition to an availability SLA: Most of the database
services on the market today offer an availability
SLA. However, Azure Cosmos DB provides a more
comprehensive SLA that includes provisions for
throughput, consistency, and latency. At the time
this book was written, the service offers 99.99 percent
guarantees for availability, throughput, latency, and
consistency. Refer to the latest SLA at https://azure.
microsoft.com/en-in/support/legal/sla/cosmos-db.

Provisioning an Azure Cosmos DB Account

We'll get right into the action by creating an Azure Cosmos DB database
in this section. To do that, go to the Azure portal, and click the “+ Create
aresource” button. Once the blade is opens, choose Databases and scroll
down to locate Azure Cosmos DB, as shown in Figure 4-3.

83

https://azure.microsoft.com/en-in/support/legal/sla/cosmos-db
https://azure.microsoft.com/en-in/support/legal/sla/cosmos-db

CHAPTER 4 ACCESSING COSMOS DB IN AZURE FUNCTIONS
New
- S
=

| | Databases l

Couchbase Enterprise Edition
{Hourly Pricing) (preview)

- Analytics
o) Al + Machine Learning Learn more
o Internet of Things Azure Database for MySQL
: Quickstart tutorial
- Mixed Reality
= Az
- ntegraticn Azure Database for PostgreSQL
S!(UI’\W Quickstart tutonal
iy + Azure Cosmos DB
Developer Tools cg:‘ Quickstart tutorial
Management Tools
SQL Server 2017 Enterprise
Software as a Service (SaaS) @ Windows Server 2016

Learn more

Alackrhain

Figure 4-3. Locating Azure Cosmos DB in the Azure portal

As an alternative, you can also type Cosmos in the Search the
Marketplace box to find Azure Cosmos DB.

Click Azure Cosmos DB, and you’ll immediately see another blade
called Create Azure Cosmos DB Account appear. Like the other resource
creation experiences, fill in the details (such as Subscription, Resource
Group, Location, and Account Name) accordingly.

One important field here is for the Cosmos DB API, as shown in
Figure 4-4. This will enable the core engine of Cosmos DB to behave like
the APIyou choose. For example, once you choose the MongoDB API and
have your application connect to Cosmos DB, your app will just treat that
Cosmos DB database like a typical MongoDB database. Note that once
you've chosen the API during creation, you won't be able to change it.

84

CHAPTER 4 ACCESSING COSMOS DB IN AZURE FUNCTIONS

Create Azure Cosmos DB Account

4" Try Cosmos DB for free, up to 20K RU/s, for 30 days with unlimited renewals. =

Basics Network Tags Review + create

Azure Cosmos DB is a globally distributed, multi-model, fully managed database service, Try it for free, for 30 days with
unlimited renewals. Go to production starting at $24/month per database, multiple containers included. Learn more
PROJECT DETAILS

Select the subscription to manage deployed resources and costs. Use resource groups like folders to organize and manage all
YOUF resources.

* Subscription Internal Consumption bl
* Resource Group Select existing w
Create new

INSTANCE DETAILS

* Account Name Enter account name
r~ ~
* APl ©@ Core (SQL) ~
Core (SQL)

Apache Spark @
Arure Cosmos DB for MongoDB AP

Cassandra
Location Azure Table

Geo-Redundancy @ Gremlin (graph)

\ J

Multi-region Writes @ " Enable

Figure 4-4. Creating a Cosmos DB account

In this example, let’s choose Core (SQL).

Another field that you need to look at is Geo-Redundancy. Enabling
this field will provision another database instance in the paired region
based on your selection of the (primary) Location field. As an example,
when you pick (Asia Pacific) Southeast Asia as the primary location, “ Asia
will be automatically selected as the secondary region. You can see the
paired region by clicking the “i” icon next to the Geo-Redundancy field,
as shown in Figure 4-5. Alternatively, you can check out the complete list
of Azure paired regions at https://docs.microsoft.com/en-us/azure/

best-practices-availability-paired-regions.

85

https://docs.microsoft.com/en-us/azure/best-practices-availability-paired-regions
https://docs.microsoft.com/en-us/azure/best-practices-availability-paired-regions

CHAPTER 4 ACCESSING COSMOS DB IN AZURE FUNCTIONS

Enable global distribution on your account by pairing (Asia Pacific) Southeast Asia with East

* |Location Asia. You can add more regions to your account later.

Geo Re‘-ciunn’ﬂnq Disable)

Figure 4-5. Geo-Redundancy field in Cosmos DB settings

In this case, let’s just leave the setting as Disable since you can turn it
on later.

The next field is Multi-region Writes, which is also a powerful
capability of Cosmos DB. This capability enables you to provision multiple
databases across different regions with readable and writable access. You
can leave it as Disable in this case, as shown in Figure 4-6.

Multi-region writes capability

your databases and cont

Multi-region Writes @

Figure 4-6. Multi-region Writes option

There are two optional steps: Network and Tags. As you are not going
to use both in this example, you can go ahead and click “Review + create.”
It will take a few minutes to provision the Cosmos DB account.

Once the account has been successfully provisioned, you will be able
to access the Cosmos DB Overview page, which shows the accessible URI
address, write and read locations, and the list of collections, as shown in
Figure 4-7.

86

CHAPTER 4 ACCESSING COSMOS DB IN AZURE FUNCTIONS

= wely) 2 X
o addcotection &) Retresh > Meove B Delete Account (3 Data Explorer

& Overiew . Curu So:nr'ml.kls.u.(n‘.US

B Acthity log iaouri p (i .—,O‘m r‘.m_;h...

s Access contro! (IAM)

hitps//wely documents. azure comdd 3/
& Tags Y

K Disgross and sclve problerrs

Collections

sers admiin 400
post admin 400
systemuindexes admin 400
sessions admin Woo

Regions

Region Configuration

Figure 4-7. Cosmos DB QOverview page

Dealing with Databases, Containers,
and Items

You then need to create a database in this Cosmos DB account. To do
that, click Data Explorer in the left menu. We'll show how to create a new
container along with a database in this section. To do that, click New
Container. Fill in the following details:

o Set the database ID to IceCreamDB. The database
basically serves as the unit of management of the
respective objects.

o Set the container ID to Rating. A container is analogous
to a collection (in the MongoDB API) or a table (in the
Cassandra API or Table API).

o Set the storage capacity to Unlimited.

87

CHAPTER 4 ACCESSING COSMOS DB IN AZURE FUNCTIONS

e Set the partition key to /ProductId. This is like the
concept of a shared key, which is used to spread the
incoming data across multiple partitions. You can learn
more about choosing the appropriate partition key at
https://docs.microsoft.com/en-us/azure/cosmos-
db/partitioning-overview#choose-partitionkey.

e Set Throughput to 400, which is the minimum
throughput you can define. The throughput (either at
the database or container level) will impact the price.

e Leave the other fields at their defaults.

As illustrated in Figure 4-8, you can click OK to proceed.

You might notice that there is a terminology difference depending on
the API that you chose during provisioning time. For more details about
the terminology, you can visit https://docs.microsoft.com/en-us/
azure/cosmos-db/databases-containers-items.

Je) wely-byfoc - Data Explorer

Add Container x

-+
0F $0.032 howrty / $0.TT dally (1 regon «

Figure 4-8. Creating a new container in Cosmos DB

88

https://docs.microsoft.com/en-us/azure/cosmos-db/partitioning-overview#choose-partitionkey
https://docs.microsoft.com/en-us/azure/cosmos-db/partitioning-overview#choose-partitionkey
https://docs.microsoft.com/en-us/azure/cosmos-db/databases-containers-items
https://docs.microsoft.com/en-us/azure/cosmos-db/databases-containers-items

CHAPTER 4 ACCESSING COSMOS DB IN AZURE FUNCTIONS

Cosmos DB Trigger in Azure Functions

The next step is to create a Visual Studio project with a Cosmos DB trigger
for Azure Functions. At the time this book was written, the Cosmos DB
trigger in Azure Functions supports only the Core (SQL) API. This also
applies to bindings, which will be discussed in the following section.

In this section, we’ll show how to create an Azure Functions function
that listens to the Rating container for any new item. If the rating is lower
than 3, it will enqueue a message into the lowratings queue residing in
Azure Queue storage.

To perform this task, create a new Visual Studio project by choosing
an Azure Functions template and giving the project a name like
PracticalAzureFunctionCh4, similar to what you did in Chapter 3.

As shown in Figure 4-9, you can then choose Cosmos DB Trigger from
the trigger template list. For the storage account, change the drop-down
from Storage Emulator to Browse to select your preferred storage account.
Subsequently fill in the “Connection string setting” field with a connection
string label such as icecreamdbcs. Note that it will be the label of the
connection string; you will fill in the connection string’s actual value in the
JSON file later. Next, fill in the “Database name” and “Collection name”
fields, respectively, with the values you specified earlier in the section 4.4.
Finally, click OK to complete the project creation.

89

CHAPTER 4 ACCESSING COSMOS DB IN AZURE FUNCTIONS

New Project - PracticalAzureFunctionsChda

v2 (NET Core)

@ =

Blob trigger

Figure 4-9. Azure Functions template fields

The next step is to add Microsoft.Azure.WebJobs.Extensions.
Storage through NuGet. As such, perform the same actions as you did in
the section 4.4. You can verify whether the package has been successfully
by going to the Installed tab, as shown in Figure 4-10.

NuGet: PracticalAzureFunctionsChd

Figure 4-10. Verifying the WebJobs.Extensions.Storage NuGet
package

Navigate to Functionl.cs, which is generated automatically by Visual
Studio. Replace the code in the namespace scope with the code snippet
shown in Listing 4-1.

90

CHAPTER 4 ACCESSING COSMOS DB IN AZURE FUNCTIONS

Listing 4-1. Function’s Main Code for Cosmos DB Trigger with
Queue Return

public static class Functioni

{
[FunctionName("Functioni")]
[return: Queue("lowratings")]
public static string Run([CosmosDBTrigger(
databaseName: "IceCreamDB",
collectionName: "Rating",
ConnectionStringSetting = "icecreamdbcs",
LeaseCollectionName = "leases",
CreateleaseCollectionIfNotExists = true)]
IReadOnlyList<Document> input, ILogger log)
{
if (input != null && input.Count > 0)
{
log.LogInformation("Documents modified " +
input.Count);
log.LogInformation("First document Id " +
input[0].1d);
if (input[0].GetPropertyValue<int>("Rating") < 3)
{
string ratingAndReview = input[0].ToString();
return ratingAndReview;
}
return null;
}
else return null;
}
}

91

CHAPTER 4 ACCESSING COSMOS DB IN AZURE FUNCTIONS

As defined, the function will run when any changes are made to the
Rating container in the IceCreamDB database.

Notice that we have made several changes to the template’s code, as
listed here:

o Weadded the [return: Queue("lowratings")]
attribute to the Run() method. This tells the Azure
Functions function to return a message to the
lowratings queue.

e We added the CreatelLeaseCollectionIfNotExists
= true attribute to the input parameter. As you can
tell from the name, this will basically create a lease
collection (or container) to the database if it doesn’t
exist. A lease collection is a special collection in
Cosmos DB that is used to track the change feed
reading progress per partition.

o Within the Run() method’s body, you basically try
to return a queue message consisting of [rating]
[review] if the rating is less than 3.

The last thing you need to do before running the code locally is to
navigate to the local.settings.json file. This is the file where you
map the label (also known as the key) to the actual value. The value of
AzurelWebJobsStorage was filled in during the section 4.4. You now need
to add the Cosmos DB connection string. Fill in the connection string
label with icecreamdbcs (unless you used a different label). To get the
actual value of the connection string, navigate to the Azure portal, choose
Azure Cosmos DB, and click the Keys menu. Copy the value of the Primary
Connection String field, as indicated in Figure 4-11.

92

CHAPTER 4 ACCESSING COSMOS DB IN AZURE FUNCTIONS

wely-byfoc - Keys

Read-write Keys

Patps/pwely-byfor documents azure.comald 3/

= = Bo
ECONDARY K
(+]
o

Figure 4-11. Cosmos DB connection string

Then paste it as the icecreamdbcs value in the local.settings.
json file in Visual Studio. Your local.settings.json file should look like
Figure 4-12.

B8{
| “IsEncrypted”: false,
B "Values": {
“AzureWeblobsStorage”™:
“DefaultEndpointsProtocol=https;AccountName=practicalazuref
EndpointSuffix=core.windows.net”,|

“FUNCTIONS _WORKER_RUNTIME®: “dotnet™,
“icecreamdbcs”: “AccountEndpoint=https:/fwely-
byfoc.documents.azure. com: 443/ ; Accountkeys o
e
}
}

Figure 4-12. local.settings.json file

Let’s run the function locally by pressing F5 in Visual Studio. If all goes
well, you should see the function host running locally in another console,
as shown in Figure 4-13.

93

CHAPTER 4 ACCESSING COSMOS DB IN AZURE FUNCTIONS

Figure 4-13. Azure Functions function running locally

Since the trigger of this function reacts to any changes on the Rating
container in IceCreamDB, you'll want to put a breakpoint in the Azure
Functions function’s code if you'd like to see how it is being triggered.

To do that, navigate to the first line of the function’s code and hit F9 on
the keyboard or choose Debug » Toggle Breakpoint in Visual Studio. You
should see the breakpoint with a red dot set, as illustrated in Figure 4-14.

lic static string Run([CosmosDBTrigger(

databaseName: “IceCreamDB",

collectionName: "Rating",

ConnectionstringSetting = "icecreamdbes™,

LeaseCollectionName = “leases”,

CreateleaseCollectionIfNotExists = true)] IReadOnlyList<Document> input, ILogger log)

@ & B if (input 1= null 8& input.Count > @)
1 {

log.LogInformation(“Documents modified ° + input.Count);

log.LogInformation(“First document Id " + input[e].Id);

if (input[@].GetPropertyValue<int>(“Rating®) < 3)

{

g ratingAndReview = input[@].GetPropertyValue<int>("Rating").ToString() + ©
return ratingAndReview;

}

Figure 4-14. Toggling the breakpoint in Azure Functions code in
Visual Studio

94

CHAPTER 4 ACCESSING COSMOS DB IN AZURE FUNCTIONS

You can now add a new item to the Rating container. To do that,
navigate back to your Azure portal, click Data Explorer, and then expand
IceCreamDB, Rating, and Items. Click New Item, as shown in Figure 4-15.

Home > wely-byfoc - Data Explorer
o wely-byfoc - Data Explorer

& Overview) £ - =
B i SELECT * FROM ¢
sl Access comral (AM) b DY e

" m
o T _

X Diagrose and solve problems

i Queck staet
* Notifications ee Defred Functions
s - ¥ ratingD6

ngs ¥ D.”"'

Rop data globally []

Detauk consi atency (N s]

g Firewall and virtual networics

& CoRs

Figure 4-15. Inserting a new item in Cosmos DB through the Data

Explorer

Subsequently, replace the JSON content with the code in Listing 4-2.

Listing 4-2. New Item in JSON Format

"Review" : "I am disappointed with the Vanilla flavor"

{
"id" ¢ "1",
"ProductId" : "1",
"Username" : "yourname",
"Rating" : 2,

}

Replace the
json here

95

CHAPTER 4 ACCESSING COSMOS DB IN AZURE FUNCTIONS

Click Save, and if the save is successful, you will notice that the
additional JSON elements (such as _rid, self, etag, etc.) have been
added automatically, as shown in Figure 4-16.

3 D Newitem & p? D Delete T Upload ltem 8 o ©

Figure 4-16. The item has been successfully saved.

If you have done the configuration properly, Visual Studio will
immediately stop at the breakpoint you set earlier with the yellow color
background, as shown in Figure 4-17.

1.-'._lFE"I CreatelLeaseCollectionIfNotExists = true)] IReadOnlylList<Document> input, ILogger log
19] {
® o B if (input != null &% input.Count > @)

log.LogInformation(“Documents modified * + input.Count);
{ log.LogInformation("First document Id " + input[e].Id);
=] if (input[@].GetPropertyValuecint>("Rating") < 3)

N

srnine antlastndbaud s = danelal CatBasnanttinlunsinty T 0ntina®l Tackalaalt

Figure 4-17. Debugging in Azure Functions

You then can navigate by Step Into or Step Over or Continue just like
how you typically perform a debugging session. If you press F5 or click
Continue, the code will run and check whether the rating is less than 3.
Since the value of the rating in the JSON file shown in Listing 4-2 is 2, the
function should return the item in JSON format as a message to the Azure
Storage queue named lowratings.

96

CHAPTER 4 ACCESSING COSMOS DB IN AZURE FUNCTIONS

You can verify this by navigating to your Storage account in the Azure
portal and then choosing the lowratings queue, as shown in Figure 4-18.

lowratings
€ BPinien deassmenge B Dequnemenisge M Clear qunse
1 Overview Austheritication method: A e kiy [Setch 10 Arure A3 User Accoumt
& Access Comtrol AM
© LG TN s
St
Acces policy TTGedac-3663-— I not debccut Sun, 12 May 201908222 Sun 19 May 201908222 ©

O Metsdata Inmén.sm. 212 diusappointed with the Vardls fuves Tos, 1 May 201903094 Tuw, 21 May 201303094 &

Figure 4-18. Verifying messages in the queue storage

Cosmos DB Bindings in Azure Functions

Conceptually, input and output bindings are similar to the Azure Storage
blob bindings discussed in Chapter 2.

In this section, we’ll show you how to follow up on the lowratings
message. Imagine the use case where customer service reaches out to a
customer to get more detailed feedback about why a given rating is low
in order to improve the product. The details of the feedback and follow-
up action will be eventually stored in another container in Cosmos DB
through Azure Functions’ Cosmos DB output bindings.

Start by creating another container named FeedbackAndAction with
/Username as the partition key in Data Explorer in the Azure portal, as
shown in Figure 4-19.

97

CHAPTER 4 ACCESSING COSMOS DB IN AZURE FUNCTIONS

" oot) B v B 2 [o T upiosd ten { Add Container e

SOL AP

e e L Y
» Do Fe

» Cnasey - (LB

o1 $6.032 hourly / $0.77 dally (1 regon s

Figure 4-19. Adding a FeedbackAndAction container in Cosmos DB

Then click OK to complete the creation process.

Let’s switch to Visual Studio as you’ll be creating another Azure
Functions function that will be listening to the lowratings queue and
saving the data into the FeedbackAndAction container. To do that,
right-click the Visual Studio project and then choose Add » New
Azure Function. Name the function FollowupFunction, as shown in
Figure 4-20.

98

CHAPTER 4 ACCESSING COSMOS DB IN AZURE FUNCTIONS

Figure 4-20. Adding a follow-up function

The next step is to add a JSON library named Newtonsoft.Json in the
NuGet package manager, as shown in Figure 4-21.

Figure 4-21. Adding the Newtonsoft.json package from NuGet

Go back to the FollowupFunction.cs file in Visual Studio and replace
all the code within the namespace with the code in Listing 4-3.

99

CHAPTER 4 ACCESSING COSMOS DB IN AZURE FUNCTIONS

Listing 4-3. Follow-up Function’s Code

public static class FollowupFunction
{

[FunctionName("FollowupFunction™)]

public static void Run([QueueTrigger("lowratings",

Connection = "AzureWebJobsStorage")]string myQueueItem,
[CosmosDB(databaseName: "IceCreamDB",
collectionName: "FeedbackAndAction",
ConnectionStringSetting = "icecreamdbcs")]out
dynamic document,
ILogger log)

log.LogInformation($"C# Queue trigger function
processed: {myQueueItem}");

dynamic obj = JValue.Parse(myQueueItem);

document = new FeedbackAndAction()

{
Id = obj.id.ToString(),
ProductId = obj.ProductId.ToString(),
Username = obj.Username.ToString(),
DetailFeedback = "The customer finds the ice
cream is too sweet",
NextAction = "Inform the kitchen to reduce the
sugar"

};

100

CHAPTER 4 ACCESSING COSMOS DB IN AZURE FUNCTIONS

Several changes are made, as follows:

e Weinserted a document with Cosmos DB properties
such as databaseName, collectionName, and
ConnectionStringSetting for the second parameter in
the Run() method. This basically tells Azure Functions
to perform an output binding with the document.

o Within the Run() method, you use JValue to parse
the queue message, which is in JSON format.
Subsequently, you fill in the document parameters with
the respective values.

Let’s run the function by hitting F5 in Visual Studio. If there isn’t any
message in the lowratings queue, you can add a new item in the Rating
container or update an existing item. Make sure to change the Rating
property to value less than 3.

You can verify whether the function ran successfully by checking out the
Items menu in the FeedbackAndAction container, as shown in Figure 4-22.

Figure 4-22. Verifying the FeedbackAndAction container

101

CHAPTER 4 ACCESSING COSMOS DB IN AZURE FUNCTIONS

Summary

You started this chapter by learning about the concept of NoSQL
databases. Then we discussed the capabilities of Cosmos DB. We then
covered how to provision a Cosmos DB account, database, and container.
Finally, you learned how Cosmos DB triggers and bindings work.

102

CHAPTER 5

Web Back-End System

In this chapter, you'll explore how Azure Functions can make interacting
with a web application more productive. You'll also build a simple project
to see how web applications and Azure Functions can work together.

The following topics will be covered:

e Introduction to Azure Functions for web applications

o How to develop a web application with Azure
Functions

o How to deploy Azure Functions to Microsoft Azure

Introduction to Azure Functions for Web
Applications

There are many web application platforms that you can use to implement
your web application. ASP.NET, PHP, JSP, and Node.js are just a few
examples of web application platforms that web developers can choose.
Each web platform provides specific features for implementing a web
system.

In general, a web application has a database to store its data and
session, as described in Figure 5-1. A web application can be hosted on a
public host. You also can publish a web application to a cloud server such
as Azure, AWS, or Google Cloud.

© Agus Kurniawan, Wely Lau 2019 103
A. Kurniawan and W. Lau, Practical Azure Functions,
https://doi.org/10.1007/978-1-4842-5067-9_5

CHAPTER5 WEB BACK-END SYSTEM

To develop a web application, developers usually use a web framework
from a web platform. You also need a web server to run a web application.
Using an integrated development tool (IDE) is one way to accelerate your
development.

Azure Functions provides some models to enable you to work with web
applications. Technically, from a security perspective, a web application
usually accepts the HTTP protocol, so one of the ways to connect Azure
Functions to a web application is to use the HTTP protocol.

In this chapter, you'll use Azure Functions with an HTTP trigger to
interact with a web application.

=2

MySQL
Database

Web App

'

SQL Server

Figure 5-1. A general web application

Building a To-Do Web Application

In this section, you'll see how to build a simple web application that
accesses Azure Functions. The application will be a to-do web application.
You can add tasks to the web application. Furthermore, the web
application calls Azure Functions to store the tasks in a database.

104

CHAPTERS5 WEB BACK-END SYSTEM

In general, you can implement the demo as shown in Figure 5-2. You
will build a web app in Azure Functions by applying an HTTP trigger. This
scenario will provide services so you can store the task data into the SQL
database. Azure Functions also can serve up task data to the public.

> &—-r N

Web Ap
PP Azure SQL Database

Figure 5-2. Azure Functions and web applications

For the implementation, you can use an ASP.NET Core web
application. This application will consume Azure Functions to store and
retrieve data from Azure SQL Database. You will need an active Azure
account to deploy your project to Microsoft Azure.

In the following section, you'll create a project for Azure SQL Database.

Creating an Azure SQL Database Instance

You can use Azure SQL Database as the data back end. You can use

an existing Azure SQL Database instance or create a new one. You can
perform this task with the Azure portal at https://portal.azure.com.
Figure 5-3 shows a new database being created named azurefuncdb.

105

https://portal.azure.com

CHAPTER5 WEB BACK-END SYSTEM

S — A e R e 1T A

& X] azurefuncdb

«

More Mcopy rRestore T Export O Setserver frewall [Delete

Resource group (change) Server name

o SQLD8 funcsql database windows.net

B Actiity log Status Elastic pool
Online No elastic pool

T
® Tog Location Connection strings
X Diagnose and solve problems Southeast Asia Show database connection strings
b Pricing t

Subscription (chan

i Guick stant ubscription {change) Sta 10 DTUs

& Query editor (preview) s ibseriotion 10 Oidest restore paint
Sheih & 2019-04-12 07:25 UTC
A

Settings.
Tags (change)

© Configure Click here to add tags

& Geo-Replication

“» Connection strings Show data for last: (IEEED 24hours 7 daps

#] Sync to other databases

Compute utilization View: Max

5 Add Azure Search
' Properties
& Locks

B3 Export template

Figure 5-3. New Azure SQL Database instance

Next, you can create a table to store tasks using the web query editor.

Execute the following SQL scripts to create the Todo table:

CREATE TABLE [dbo].[Todo](
[id] [int] IDENTITY(1,1) NOT NULL,
[todo] [varchar](50) NOT NULL,
[posted] [datetime] NOT NULL,
CONSTRAINT [PK Todo] PRIMARY KEY CLUSTERED

(
[id] ASC

JWITH (PAD_INDEX = OFF, STATISTICS NORECOMPUTE = OFF, IGNORE_
DUP_KEY = OFF, ALLOW ROW _LOCKS = ON, ALLOW PAGE LOCKS = ON) ON

[PRIMARY]
) ON [PRIMARY]
GO

106

CHAPTERS5 WEB BACK-END SYSTEM

To connect the web application to the Azure SQL Database instance,

you need a database connection string. You can get this setting in the

“Connection strings” menu from your database in Azure SQL Database.

Copy the ADO.NET connection string data as shown in Figure 5-4.

BICT (ESOLTES, SErVICes, 8Na 00Cs

acus kurNwAN D

<tion strings
® .0 azurefuncdb - Connection strings *
Search (Ctele)
ADONET | JDBC ODBC PHP
& Overview
ADO NET (SOL authentication) - private endpoint
B Activity log
net, 1433;Initial Catalog db;Persist Security Iy
& Tags Infa=False:User ID={your_usemame)Password= @
A : : ot

’(Diagnose and solve problems

i

B

Quick start

Query editor (preview)

Settings

@

Configure

& Geo-Replication

& Connection strings

i Sync to other databases

< Add Azure Search
'I' Properties

Locks

Export template

Download ADD.NET driver for SOL server

Figure 5-4. Database connection string

You should change the {your_username} and {your password} values

for your Azure SQL Database configuration.

Next, you'll create a project for Azure Functions.

Creating an Azure Functions Project

You created a project for Azure Functions in the previous chapter. For

this demo, you can create an Azure Functions project with C# as the

programming language, as shown in Figure 5-5.

107

CHAPTER5 WEB BACK-END SYSTEM

Create a new project

Recent project templates

Figure 5-5. Creating an Azure Functions project

For the example implementation, create an Azure Functions project
called TodoFunctions. You can use the “HTTP trigger” project template, as

shown in Figure 5-6. After creating a project, you can continue to develop
the Azure Functions program.

108

CHAPTERS5 WEB BACK-END SYSTEM

New Project - TodoFunctions

Azure Functions v2 (NET Core)

ount (AzureWeb)

N @ =

Empty Blob trigger

me capabilities may require an Azur
ghts

Anonymous

. Additional

Cancel

Figure 5-6. HTTP trigger project template for Azure Functions

Developing an Azure Functions Program

In this section, you'll develop a program for Azure Functions. The program
will store and retrieve tasks from your Azure SQL Database instance.
Figure 5-7 shows the general project structure, which consists of three files.

e The Todo.cs file is a model object for tasks.

e TheAzureSQLDB.cs file is a data access object to
perform SQL queries against Azure SQL Database.

e The ToDoFunc.cs file is an Azure Functions
implementation.

You will implement these files in this section.

109

CHAPTER5 WEB BACK-END SYSTEM

%3 Solution ‘TodoApp' (2 projects)

4 %] TodoFunctions
ependencies

c* Todo.cs

¢®* ToDoFunc.cs

Figure 5-7. Project structure for TodoFunctions

First, you'll create a model for tasks. Create a class called Todo and
define three properties for the Todo model: Id, TodoMessage, and Posted
You can write this code:

using System;

namespace TodoFunctions

{
public class Todo
{
public int Id { get; set; }
public string TodoMessage { get; set; }
public DateTime Posted { get; set; }
}
}

110

CHAPTERS5 WEB BACK-END SYSTEM

Next, create a data access object to interact with Azure SQL Database.
You can create a class called AzureSQLDB and define two static methods,
GetAllTodo() and InsertTodo(). The GetAllTodo() method is used to
retrieve all tasks from Azure SQL Database. The InsertTodo() method is
used to insert a task into the Azure SQL Database instance.

To access the Azure SQL Database instance, you can use ADO.NET
from the SqlClient package. You define the System.Data.SqlClient
package in the AzureSQLDB object, like so:

using System.Data.SqlClient;

In the GetAllTodo() method, you get a database connection string by
calling the Environment.GetEnvironmentVariable() method. You define
azure_sql for the database connection string name. You can also define a
list variable as a collection of Todo objects.

public static List<Todo> GetAllTodo()
{
List<Todo> list = new List<Todo>();
string db = Environment.GetEnvironmentVariable("azure sql");

You can use a SqlConnection object to open a connection to Azure
SQL Database with a certain database connection string. You pass a SQL
query to the SqlCommand object to retrieve all the tasks from the Todo table.

All the tasks are stored in a collection of Todo objects using the
SqlDataReader object. The following is the implementation code:

try
{

using (SgqlConnection conn = new SqlConnection(db))

{

conn.Open();
var text = "SELECT * from [Todo]";

111

CHAPTER5 WEB BACK-END SYSTEM

using (SqlCommand cmd = new SqlCommand(text, conn))

{
var rd = cmd.ExecuteReader();
while (rd.Read())
{
var o = new Todo();
0.1d = (int)rd["id"];
o.TodoMessage = (string)rd["todo"];
0.Posted = (DateTime)rd["posted"];
list.Add(o);
}
rd.Close();
}
}
}
catch (Exception)
{
}

Next, you declare the InsertTodo() method to insert a task into Azure
SQL Database. This method needs a task name as the method input. First,
you get a database connection string from the azure_sql setting.

public static bool InsertTodo(string todo)
{

string db = Environment.GetEnvironmentVariable("azure sql");

You can use the SQL query to insert data into Azure SQL Database.
You can perform this step using the Sq1Command object. You call
ExecuteNonQuery () from the SqlCommand object to insert data into the
database.

112

CHAPTERS5 WEB BACK-END SYSTEM

using (SgqlConnection conn = new SqlConnection(db))

{
conn.Open();
var text = "INSERT INTO [Todo](todo,posted) VALUES
(@todo,getdate())";

using (SqlCommand cmd = new SqlCommand(text, conn))

{
cmd.Parameters.Add(new SqlParameter("@todo", todo));
cmd. ExecuteNonQuery();

Last, you need to edit the Azure Functions code in the TodoFunc.cs
file. First, declare all required packages for your project, as shown here:

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;
using Microsoft.AspNetCore.Http;

using Microsoft.Extensions.Llogging;

using Newtonsoft.Json;

using System.Data.SqlClient;

When you create a project for Azure Functions with an HTTP trigger,
you will get a sample program. You can modify this code for your project
scenario. For example, you can define the Azure Functions function
with the name ToDoFunc so you can handle HTTP GET and HTTP POST
requests from clients.

If you receive an HTTP GET request, you perform a SQL query to
retrieve all the tasks from the database. You call the GetAl1Todo() method
from the AzureSQLDB object.

113

CHAPTER5 WEB BACK-END SYSTEM

public static class ToDoFunc
{
[FunctionName("ToDoFunc")]
public static async Task<IActionResult> Run(
[HttpTrigger(AuthorizationLevel.Anonymous, "get",
"post"”, Route = null)] HttpRequest req,
ILogger log)

log.LogInformation("TODO HTTP trigger function
processed a request.");

if(req.Method.ToLower() == "get")

{
var list = AzureSQLDB.GetAllTodo();

return (ActionResult)new
OkObjectResult(JsonConvert.SerializeObject(list));

}

Furthermore, if you receive an HTTP POST request, you perform a SQL
query to insert a task into the database. You parse the incoming JSON data
from the HTTP request packet. You call the InsertTodo() method from the
AzureSOQLDB object.

else

{

string requestBody = await new StreamReader(req.Body).
ReadToEndAsync();

dynamic data = JsonConvert.DeserializeObject(requestBody);
string todo = data?.message;

114

CHAPTERS5 WEB BACK-END SYSTEM

if(AzureSQLDB.InsertTodo(todo))
return (ActionResult)new OkObjectResult($"succeed");

else
return (ActionResult)new OkObjectResult($"failed");

Save all the code. Next, you deploy your Azure Functions project to the

Azure server.

Deploying Your Azure Functions Project

You can deploy your project to Microsoft Azure easily through Visual
Studio. You should download a publish profile file from Azure Functions.
Then, you use the profile file in the project, as shown in Figure 5-8.

Figure 5-8. Deploying Azure Functions to the Azure server

115

CHAPTER5 WEB BACK-END SYSTEM

You can also configure the project dependencies. To add Azure SQL
Database, click the Add link. After clicking, you get the dialog shown in
Figure 5-9. Select your existing Azure SQL Database instance.

Figure 5-9. Adding the Azure SQL Database instance to Azure
Functions

Set the database connection string name to azure_sql. You also need
to set the username and password for Azure SQL Database. If done, click
the Add button.

Now you can publish the project to Azure. Check the Application Settings
area on the publishing form to see if you were successful (Figure 5-8). You
should see azure_sql for the database connection string name, as shown in
Figure 5-10.

116

CHAPTERS5 WEB BACK-END SYSTEM

Application Settings

al Catalog=AzureFuncDE;P

t,1433;Initial Catalog=AzureFuncDE;P

<= Add Setting

Cancel

Figure 5-10. Checking the application settings for Azure SQL
Database in Azure Functions

Next, you will test your Azure Functions program.

Testing Azure Functions

Microsoft provides an HTTP trigger for Azure Functions. You can find this
tool in Azure Functions. Open Azure Functions, and you will see the
“View files” and Test tabs. Click the Test tab to see the testing tool, as
shown in Figure 5-11. This tool can be used to perform HTTP POST and
GET requests. You also add request headers and a body.

117

CHAPTER5 WEB BACK-END SYSTEM

et 5 Aemsclats - ToDoFure

ilmudata - ToDoFunc # ®

ure

Lt h

Qusry

4+ 8 pacametes ‘,
» / TaDoFun Hesters ,
b isteg content-Type spesmcn
PTa—

“message”:"this todo from web test” b

3= Promis (Hasd On
I —Teere— \

Figure 5-11. Testing Azure Functions for the HTTP POST scenario

For our simple scenario, you'll add a task. So, submit an HTTP POST
to Azure Functions to insert a new task. You can set the HTTP method
as POST. You also add a request header called content-Type with the
application/jsonvalue. Then, you can write the request body as follows:

{

"message": "this todo from web test"

Now you can run this tool by clicking the Run button.

After it’s executed, you should get a response from Azure Functions.
Testing log and output response from Azure Functions on the bottom of
your tool. Figure 5-12 shows the result of our test in Azure Functions.

118

CHAPTERS5 WEB BACK-END SYSTEM

e > Alresources » Bmudsta - ToDchunc
ilmudata - ToDoFunc X
2 matata) G -
Mitrsesh Amre Saseenng i 2 “mescage” s “this todo from web test™ |

= runction Apps
w i mudata
» 1= functions Read Oniy)

» § TeDolune

¥ ntegrate
© Minage
. L.
frreee
o -
— Sheowen Dioyiegs WPane BOew . Expard
b = Prowies (Read Only)
Pom connectod to Tog-streaming service.
be pat 1 mings).
. *This fusction sas programatically called vi
A7
b

Figure 5-12. A result of testing Azure Functions

To verify whether your task data is stored in a database, you can use
the query editor tool from Microsoft. You perform the following query by
typing this script:

select * from dbo.todo

Figure 5-13 shows our the query program output.

« wc + Mlpesoces * arwehancd - Query ediior tpeevicn)
wrefuncdb - Query editor (preview) *
€ Riegn w7 Openauey d Seveouery W Frodback
o arurchunceb (agusk) o
5 P Bun

1 select * from dbo.todo
g kA cthes] b hare.

i and soéve problems il
= » Otables
] [-=E
(3=
» Clstored Proceduses
e
i Rosults Brssages
| cxtion strimgs

et datsbines

o oo resmn

s Saarch

Ries “ 1his kado from web test 2000 04 FOTONIRIT 9590000
S——

e Data Scewsity
& Guery cucceedad | 05

Figure 5-13. Verifying data on Azure SQL Database

119

CHAPTER5 WEB BACK-END SYSTEM

Next, you can test that Azure Functions is retrieving all the tasks by
performing an HTTP GET request to Azure Functions. You don’t need to
put any data in the request body. After executing the request, you will see
the JSON data in the Output panel, as shown in Figure 5-14.

o]

Figure 5-14. Testing Azure Functions for an HTTP GET scenario

You also can perform testing using Postman. This tool can perform
HTTP GET/POST requests. It’s suitable for your RESTful projects. You can
get this tool at https://www.getpostman.com.

Using the Postman tool is easy. You put in a targeted server and set
up HTTP request parameters. For this scenario, you can get the Azure
Functions URL from Azure Functions in the Azure portal, as shown in
Figure 5-15.

120

https://www.getpostman.com

CHAPTERS5 WEB BACK-END SYSTEM

I s e

Home > All resources » ilmudata - ToDoFunc

ilmudata - ToDoFunc ‘

Get function URL

Key __ URL
- |

Figure 5-15. Getting the Azure Functions URL

For demo purposes, enter your Azure Functions URL in the Postman
tool with GET mode to perform an HTTP GET. Then, click the Send button.
If you succeed, you will see the response’s output. Check the output data
on the Body tab, as shown in Figure 5-16.

| @ Postman
File Edit View Help

2% MyWorkspace * &, Invite
No Environment o Lod
‘ aIT httpsc/fimudata.azurewebsitesr @ 4 see &
GET * hupsifimudataazurewebsites.net/apiToDoFunc Send v Save ~
Body
® none P formdata '@ xwww-formurlencoded @ raw binary T
1
| Body (1] o 433
f—
Pretty v Auto * = | Q
L [{"1a":4,"TodoMassage™: "this todo from web test”,"Posted”:"1019-04-307T81:39:37.95°})
D] B3 © Bootcamp frowse BE s ¢

Figure 5-16. Testing Azure Functions using the Postman tool

121

CHAPTER5 WEB BACK-END SYSTEM

After testing Azure Functions, you can continue to develop your web
application in the next section.

Developing a Client Web Application

You can develop an ASP.NET Core web application to access Azure
Functions. In this section, you'll use the ASP.NET MVC project template, as
shown in Figure 5-17.

Next you'll add a model to the project. Add the Todo. cs file into the
Models folder from your project. Then, write the following code:

using System;
using System.ComponentModel.DataAnnotations;

namespace TodoWebApp.Models

{
public class Todo
{
public int Id { get; set; }
[Required]
[Display(Name = "Todo Message")]
public string TodoMessage { get; set; }
public DateTime Posted { get; set; }
}
}

122

CHAPTERS5 WEB BACK-END SYSTEM

Figure 5-17. Project structure for the web application

Next, modify the view Index.cshtml. You can add your model to the
script.

@model TodoWebApp.Models.Todo

Then create a form and a table with the <div> tag to populate your

tasks from Azure Functions.

<div>

<h4>Todo Web App</h4>

<p>Fill your todo on this field.</p>

<div class="form-group">
<label class="control-label">Todo Message</label>
<textarea id="txtMessage" class="form-control"
rows="5" cols="20"></textarea>

</div>

123

CHAPTER5 WEB BACK-END SYSTEM

<div class="form-group">
<input type="button" value="Save" class="btn btn-
primary"” onclick="saveData()" />
<label id="status"class="control-label"></label>
</div>

</div>

<div class="container">
<h2>List of Todo</h2>
<div id="todolist" class="list-group">
</div>

</div>

The user will insert a task on Textare with an ID of txtMessage.
When the user clicks the Save button, you call the saveData() JavaScript
function. Furthermore, you populate all the tasks on the table <div> with
an ID of todolist. This task data is populated from JavaScript scripts. You
implement the JavaScript scripts at the bottom of the <HTML> tag.

First, you call the reloadTodo() JavaScript function when the page
document is loaded. You retrieve all the tasks from Azure Functions
by calling the jQuery get () function. This function performs an HTTP
GET. Here we are passing https://ilmudata.azurewebsites.net/api/
ToDoFunc to Azure Functions. Change it to your own Azure Functions URL.

<script>
$(document).ready(function () {
$('#status').html("");
reloadTodo();

};

function reloadTodo() {
$.get("https://ilmudata.azurewebsites.net/api/ToDoFunc",
function (data) {

124

https://ilmudata.azurewebsites.net/api/ToDoFunc
https://ilmudata.azurewebsites.net/api/ToDoFunc

CHAPTERS5 WEB BACK-END SYSTEM

console.log(data);

$.each(JSON.parse(data), function (i, item) {
$('<h4
class="list-group-item-heading">"' + item.
TodoMessage +
"</h4><p class="list-group-item-text">"' +
item.Posted +

"</p>").appendTo("#todolist");

};

};
}

You also implement the saveData() JavaScript function to store a
task into Azure SQL Database. You get a task name using jQuery. Then,
you post a task data in JSON format to Azure Functions using the post ()
function from jQuery. Change the Azure Functions URL to your own.

function saveData() {
var txt = $('textarea#ttxtMessage').val();
var data = {
message: txt

};

$.post("https://ilmudata.azurewebsites.net/api/ToDoFunc",
JSON.stringify(data),
function (result) {
console.log(result);
if (result == "succeed") {
$("#status').html("Saving data was succeed");
$('textareatttxtMessage').val(");
reloadTodo();

125

CHAPTER5 WEB BACK-END SYSTEM

} else {
$("#status').html("Saving data was failed");

};
}

</script>

Since you use jQuery in the ASP.NET Core view, you should modify the
_Layout.cshtml file so the jQuery file is loaded in the HTML header. You
can modify it as shown here:

<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-
scale=1.0" />
<title>@viewData["Title"] - Todo WebApp</title>

<script src="https://cdnjs.cloudflare.com/ajax/libs/

jquery/3.3.1/jquery.min.js"
asp-fallback-src="~/1ib/jquery/dist/jquexry.min.js"
asp-fallback-test="window.jOQuery"
crossorigin="anonymous"
integrity="sha256-FgpCb/KJQ1LNfOu91ta320/
NMZx1twRo80QtmkMRdAu8=">

</script»

</head>

Save your code now.

Now you can run the ASP.NET Core application. Write your task and
then click the Save button. You should get a confirmation. You also get a
list of existing tasks. Figure 5-18 shows our program output in the ASP.NET
Core web application.

126

CHAPTERS5 WEB BACK-END SYSTEM

® a Home Page - Todo Wet X | 4 = o X

0] a localhost 4 b4 ¥ g\- [

Todo WebApp Home Privacy

Todo Web App

Fill your todo cn this field.

Todo Message

Saving data was succeed

List of Todo

this todo from web test

2019-04-30T01:39:37.95

this is message 1

2019-04-30T02:40.08 463

this is message 1

2019-04-30T02:40:57.83

Figure 5-18. Program output in ASP.NET Core web application

If you get errors regarding CORS, you can set Azure Functions to
enable CORS operations. You can find the setting on the “Platform
features” tab in Azure Functions, as shown in Figure 5-19. Add your web
URL from the ASP.NET Core web application.

127

CHAPTER5 WEB BACK-END SYSTEM

Flarinm frstarey

o [, T (- -
g 5o e

Figure 5-19. Configuring CORS in Azure Functions

Summary

In this chapter, you learned how to access Azure Functions from a web
application. You also developed a simple project by implementing an
Azure Functions program, a web application, and an Azure SQL Database
instance. In the next chapter, you will focus on how to work with Azure
Functions and mobile applications.

128

CHAPTER 6

Mobile Back End

Mobile applications have been one of the greatest innovations of the
Internet era. Many businesses provide mobile applications to increase
sales or drive business to their company. This chapter explores how to
integrate mobile applications with Azure Functions. Essentially, Azure
Functions works as the back end to serve a mobile application.

The following topics are covered in this chapter:

e Mobile platforms
o Using Azure Functions for mobile applications

e Building an Azure Functions program for an Android
application

Reviewing Mobile Platforms

Nowadays people can’t get away from their mobile devices. People use the
mobile applications on their mobile devices to increase their productivity.
Others use mobile applications to have fun such as when playing mobile
game applications.

There are two mainstream platforms for mobile applications, Android
and iOS. Android is built by Google, and iOS is built by Apple. Each mobile
platform provides an application store so that people can download and
install mobile applications. Some applications are free, and others cost
money.

© Agus Kurniawan, Wely Lau 2019 129
A. Kurniawan and W. Lau, Practical Azure Functions,
https://doi.org/10.1007/978-1-4842-5067-9_6

CHAPTER6 MOBILE BACK END

To develop an Android application, you need to register as an Android
developer. All the development tools are free. You can get all the Android
resources at https://developer.android.com. To publish your Android
application to the Google Play Store, you have to pay Google. Currently, the
cost is $25 for a lifetime. Google provides an Android emulator to test your
program, so you don’t need to get an Android device to run your program.
Still, it’s recommended that you have an Android device to make sure your
Android application runs well on a real device.

To develop an iOS application, you can use Objective-C and Swift. You
also need a Mac to develop iOS programs. To access the iOS development
resources, you need a developer license from Apple. Currently, the Apple
developer license is $99 per year. You can get more information about
registering to be an Apple developer at https://developer.apple.com.

Sometimes you need to maintain Android and iOS versions of your
mobile application. This has been a painful experience, but there is another
option, which is to use hybrid approach. You can use the Ionic (https://
ionicframework.com) and React Native https://facebook.github.
io/react-native/ (frameworks). These frameworks use HTMLS5 as the
programming language. If you love C#, you can choose Xamarin to develop
Android and iOS applications. You can get more information about Xamarin
development on https://visualstudio.microsoft.com/xamarin/ website.

In this chapter, we focus on the Android platform when creating a
mobile application to access Azure Functions.

Introducing Azure Functions for Mobile
Applications

Microsoft provides an Azure solution to enable you to work with various
mobile platforms. You can host app services to serve your mobile requests
over HTTP/HTTPS. You can also build mobile notifications to create more
interactions between your application and users. You can see a list of

130

https://developer.android.com
https://developer.apple.com
https://ionicframework.com
https://ionicframework.com
https://facebook.github.io/react-native/
https://facebook.github.io/react-native/
https://visualstudio.microsoft.com/xamarin/

CHAPTER6 MOBILE BACK END

Azure services that you can use in mobile applications at https://azure.
microsoft.com/en-us/product-categories/mobile/. Figure 6-1 shows
the various Azure services for mobile applications.

@ arure microsoft com

8 Microsoft Azure

Mobile

Build high-quality, cloud-powered mobile apps to reach your customers on every device

Quickly build engaging, no-compromise Android, i05, and Windows apps that fit your business needs and reach your customers wherever they are. Power your apps with
intefligent back-end services and automate your development lifecyche to ship faster and with more confidence

Find the Azure services for your mobile applications

IF YOU WANT TO... USE THIS

Add intelligent back-end services. authentication. offline data sync. and secure integrations with cowd and on-premises systerms.

Send personalized push notifications to any mabile platform from any back end Notif

Figure 6-1. Azure services for mobile applications

Azure Functions is one of the Azure services that enables you to
serve your mobile applications. Azure Functions can work as a “service
interface” so you can access internal Azure resources such as Azure SQL
Database, Azure Storage, and other compute resources. Azure Functions
with an HTTP trigger can be used as the interface to your back end for
mobile applications. In this chapter, you'll explore how to access Azure
Functions from mobile applications.

First, you'll develop an Android application that works with Azure
Functions. Specifically, you'll learn how to make a registration application
on Android.

131

https://azure.microsoft.com/en-us/product-categories/mobile/
https://azure.microsoft.com/en-us/product-categories/mobile/

CHAPTER6 MOBILE BACK END

Building a Registration Mobile Application

In this section, you'll learn how to develop a mobile application to access
Azure Functions. For the mobile platform implementation, we will use
the Android platform. Azure Functions will perform the user registration
process. All Android requests will be handled by Azure Functions.

Figure 6-2 shows the demo scenario. The Android application will send
the user registration data to the Microsoft Azure server through Azure
Functions. You'll also prepare Azure Functions to listen for incoming
messages via the HTTP POST protocol. Once Azure Functions receives
data, Azure Functions will store the data in Azure SQL Database.

& & B,

Mobile
App

Azure SQL Database

Figure 6-2. A demo scenario of a mobile application and Azure
Functions

To implement the demo, you should have an active account on
Microsoft Azure. Some Azure resources will probably cost money, such as
Azure SQL Database.

Next, you'll create an Azure SQL Database instance.

Creating an Azure SQL Database Instance

All the user registration data will be stored in Azure SQL Database. Azure

SQL Database uses SQL Server running in a cloud environment. You can find
detailed service information and a list of the features of Azure SQL Database at
https://azure.microsoft.com/en-us/services/sql-database/.

132

https://azure.microsoft.com/en-us/services/sql-database/

CHAPTER6 MOBILE BACK END

Now you'll create a database on Azure SQL Database or use your

existing Azure SQL Database instance. Figure 6-3 shows the dashboard for

Azure SQL Database. You can see our funcsql server has a database called

azurefuncdb on it.

_’; cinetbossabin el
;

a funcsql - SQL databases

B Overdew

B Activity bog azurefune b
s Acoess control (JAM)

o Teg

K Diagnose and solve probilems

Settings

i Cuick start

& Fadover groups

& Manage Backups

& Active Directory admin

B 50L dstabases

@ 50U elasthe pooks

W Deloted databases

& Import/Export history
DTU quats
Propertics

& Locis

B Expont remplate

Standard S0x 10 DTus

Figure 6-3. Azure SQL Database dashboard

Next, you'll create a table for demo purposes using SQL scripting. To

keep the data model simple, the user registration application has two data
items: full name and e-mail. You'll name the table UserReg, and it will have

four columns, as follows:

o 1idisaprimary key of the UserReg table.

o fullname is the full name of the user.

o email isthe user’s e-mail.

o postedis a date of the received data.

133

CHAPTER6 MOBILE BACK END

Create the UserReg table using the following SQL script:

CREATE TABLE [dbo].[UserReg](
[id] [int] IDENTITY(1,1) NOT NULL,
[fullname] [varchar](50) NOT NULL,
[email] [varchar](30) NOT NULL,
[posted] [datetime] NOT NULL,
CONSTRAINT [PK UserReg] PRIMARY KEY CLUSTERED
(
[id] ASC
JWITH (PAD_INDEX = OFF, STATISTICS NORECOMPUTE = OFF, IGNORE
DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE _LOCKS = ON) ON
[PRIMARY]
) ON [PRIMARY]
GO

You can run these scripts in the query editor available on the database
dashboard in your Azure SQL Database instance. You can also run this
script using SQL Server Management Studio with remoting to the Azure
SQL Database server. Figure 6-4 shows the UserReg table on our database.

134

CHAPTER6 MOBILE BACK END

e ———

5 - Query aditor [preview)

aditor (preview) .
B vogar Frencuery T Opmguery & Savequery & Brpotdmsss jion & Bpormdsam.cey W Ferdback
azurefuncdb (agusk) 1) Qa1 X
P Run
(1@ [anj
Showing bmited chject expicees here.) [Ful Lname]

For hal capabity please open SSDT. 4 [email] [va
[posted] [datetime] wOT ML,

- et CONSTRAINT [PK_UserReg] PRIMARY KFY CLUSTERED

ables 7 -
v [l dbosensor 8 [1d] Asc
v EdpeTedo 5 JWITH (PAD_TNDEX = OFF, STATISTICS MORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = OH, ALLOW_PAGE_LC

W) on [PRIMARY)

b il dbo Useeheg
11 &0

b Oviem

+ CStared Procedures
Results Messages

Query swcoseded: Affected rows: 8.

O Query succeeded | 13

Figure 6-4. Creating the UserReg table in Azure SQL Database

Next, you can create an Azure Functions project using Visual Studio to
serve all the requests from Android applications.

Creating an Azure Functions Project

Azure Functions is designed to be easy to use. You can develop an Azure
Functions program using the Azure web editor or using Visual Studio. You
also can create an Azure Functions program with the Azure CLI. In this
section, you'll learn how to develop an Azure Functions program using
Visual Studio 2019.

You can start creating the Azure Functions project by selecting the
Azure Functions template. Since we're talking about Android applications
in this chapter, use the HTTP trigger template to start your Azure
Functions program, as shown in Figure 6-5. An Android application can
communicate over HTTP easily.

135

CHAPTER6 MOBILE BACK END

You'll want to set up a storage account for your project. Set the access
rights to Anonymous. Fill in the project name; we used RegAzureFunctions.
After filling in all the project fields, click the OK button.

New Project - RegAzureFunctions

Azure Functions v2 (NET Core)

capabilities may require an Azure storage account.

e
E '-q nghts
H-0)
[Anonymous

Http trigger loT Hub trigger

Additional

Cancel

Figure 6-5. Creating an Azure Functions project with an HTTP trigger

You will get some template code for your Azure Functions project.
Before you write any new code, you need to add the prerequisite libraries.
So, add the System.Data.SqlClient and Newtonsoft.Json libraries to
your project through NuGet.

This program scenario is to listen for an HTTP trigger. You will receive
a message from an Android application in JSON format in the following
format:

{

"fullname": "<full name of user>",
"email":"<user email>"

136

CHAPTER6 MOBILE BACK END

You can encode this JSON message from the HTTP body request and
convert it to a UserReg object via the deserialization process by calling
the JsonConvert.DeserializeObject() method. This method is part of
the Newtonsoft.Json library. After obtaining the UserReg object, Azure
Functions will store it in Azure SQL Database.

The UserReg object holds the full name and e-mail of the user. You
define the UserReg object as the UserReg.cs file. The following is the
UserReg object implementation:

using System;

namespace RegAzureFunctions

{
public class UserReg
{
public string FullName { set; get; }
public string Email { set; get; }
}
}

To continue the example, we store the UserReg object in Azure SQL
Database and define your own database object, called AzureSQLDB. Then
call the InsertRegistration() method to store the data in the database.

The following is the Azure Functions code implementation:

[FunctionName("RegAzureFunc")]

public static async Task<IActionResult> Run(
[HttpTrigger(AuthorizationLevel.Anonymous, "post", Route =
null)] HttpRequest req,
ILogger log)

log.LogInformation("C# HTTP trigger function processed a
request.");

137

CHAPTER6 MOBILE BACK END

string requestBody = await new StreamReader(req.Body).
ReadToEndAsync();

UserReg user = JsonConvert.DeserializeObject<UserReg>(reque
stBody);

return AzureSQLDB.InsertRegistration(user)
? (ActionResult)new OkObjectResult($"Registration data
was received")
: new BadRequestObjectResult("There was error to save
data into Azure SQL Database");

The AzureSQLDB object applies ADO.NET objects to manipulate data
for SQL Server. You define the InsertRegistration() method to store
data in Azure SQL Database, and you use the SQLCommand object to execute
the INSERT query to store the database by calling the ExecuteNonQuery ()
method and passing the UserReg object.

public static bool InsertRegistration(UserReg user)

{

string db = Environment.GetEnvironmentVariable("azure sql");

try
{

using (SqlConnection conn = new SqlConnection(db))

{

conn.Open();

var text = "INSERT INTO [UserReg]

(fullname,email,posted) " +
"VALUES(@fullname,@email,getdate())";

138

CHAPTER6 MOBILE BACK END

using (SqlCommand cmd = new SqlCommand(text, conn))

{
cmd.Parameters.Add(new SqlParameter
("@fullname", user.FullName));
cmd.Parameters.Add(new SqlParameter("@email”,
user.Email));
cmd. ExecuteNonQuery();
}
}
}
catch (Exception)
{
return false;
}

return true;

You can obtain a connection string for Azure SQL Database from
the azure_sql setting, which you define when publishing your Azure
Functions project to Microsoft Azure. Now you can compile your Azure
Functions project. Make sure you don’t get any errors while compiling
the project.

So, you have developed an Azure Functions project using Visual

Studio. Next, you will publish it.

139

CHAPTER6 MOBILE BACK END

Publishing an Azure Functions Program

Publishing an Azure Functions project with Visual Studio is easy. Right-
click the Azure Functions project and then select the Publish menu. You
can publish the project by logging in with your existing Azure account, or
you can import the Azure Functions profile file from Azure Functions.

For this demo, you will publish your project into the existing Azure
Functions account by selecting your existing Azure App Service account
and then choosing your Azure Functions service, as shown in Figure 6-6.
Click the OK button when you’re done.

App Service
Sel

Existing App Service

@ limudata
» % RegAzurefunctions

+ il iimudatafunc

Figure 6-6. Choosing an existing Azure Functions profile

140

CHAPTER6 MOBILE BACK END

After selecting the Azure profile for Azure Functions, you will see the
publishing settings, as shown in Figure 6-7. Next, you can configure a
connection string for Azure SQL Database.

Specifically, you should define the azure_sql setting for your project.
You can copy the database connection string from Azure SQL Database by
clicking the Edit Azure App service setting menu in Figure 6-7. Then, paste
itinto azure_sql in the Remote field, as shown in Figure 6-8. When you're
done, click the OK button to save these publishing settings.

Figure 6-7. Publish settings in Azure Functions project

After you successfully publish, you will be able to see your Azure
Functions program in the Azure Functions dashboard. Next, you will test
your Azure Functions program.

141

CHAPTER6 MOBILE BACK END

Application Settings

FUNCTIONS_EXTENSION_VERSION

Local

Remote ~2

QueueTriggerConnection

Local

Remote DefaultEndpointsProtocol=https;AccountName=ilmustorage;AccountKey=CriNhvRnquSi4.
azure_sql

Local

Remote Server=tcp:funcsql.database.windows.net,1433;Initial Catalog=azurefuncdb;Persist Securit

o= Add Setting

Cancel

Figure 6-8. Configuring a database connection for Azure SQL
Database

Testing an Azure Functions Program

You can test Azure Functions programs using the web tool from Azure.
First you open your Azure Functions program on the Azure Functions
dashboard. Then you click the Test tab so you can see the testing features,
as shown in Figure 6-9. For this demo, you can send some dummy
registration data in JSON format. Write this JSON data in the request body:

{

"fullname": "agus kurniawan",
"email":"agusk@myemail.com"

142

CHAPTER6 MOBILE BACK END

Click the Run button to execute this tool. You should see verbose
messages during testing in the Logs window, as shown in Figure 6-9. You
also can see the response messages from the Azure Functions server in the
Logs window.

oft Arure 5 Soarch ressarces, services, and decy

i) Reghnuefuscrions - RephreeFure

RegAnwrefunctions - RegAzureFun: 2 o

Reghnatiuncions” ®

Srrocsmnact QiCooyiogs Wrame @Ces Fimped

60 welcome, you are mew consectnd to log-stresming service.

Figure 6-9. Testing Azure Functions programs using the Azure
Functions web tool

After sending data to Azure Functions, you can verify your data in
Azure SQL Database. Open your database in Azure SQL Database. Then,
perform a SQL query to see your data. You should see the data that was
sent from the web test tool. Figure 6-10 shows our resulting data in Azure
SQL Database.

143

CHAPTER6 MOBILE BACK END

_ ZbeicLiccseaoetisiei i)

Query editcr (preveen]

ditor (preview) 3

azurefuncdb (agusk) (3]

Showing leited object expioner bere.
For full capability piease open S50

w [Tables

b [o Sensoe

© LI o wosTED
Agus Kumawan agusk@rryemailcom 2015-05-04T06:3 3:06.67 1000
Agus Kumiwan sguik@rmyemalcom 019-06-0AT0R S04 T0000

Agus Karmirwan squik@ryemuleom 20190504108 55:15.4630000

& Query succeedsd | 15

Figure 6-10. Displaying UserReg data using the query editor in Azure
SQL Database

Next, you will learn how to develop an Android program to access an
Azure Functions program.

Developing an Android Application

You have developed an Azure Functions program and have already
uploaded it to Microsoft Azure. Now you can develop a program for an
Android application. For the development tool, you can use Android
Studio from Google. You can download and install it at https://
developer.android.com/studio.

Microsoft has provided SDK libraries for mobile platforms. For the
Android platform, you can use the Android SDK to access Azure services
using the Azure.Android SDK. Visit https://github.com/Azure/Azure.
Android to get the details.

144

https://developer.android.com/studio
https://developer.android.com/studio
https://github.com/Azure/Azure.Android
https://github.com/Azure/Azure.Android

CHAPTER6 MOBILE BACK END

For this demo, you will see how to develop an Android program using
Android Studio. You could also develop an Android program using Java or
Kotlin. For this demo, we’re using Java as the programming language to
build the Android application.

Open Android Studio and select the Empty activity template. Fill in
your project name; for instance, we entered RegistrationApp, as shown in
Figure 6-11. Click the Finish button to create your Android project.

Figure 6-11. Creating an Android project using Android Studio

Now you'll start to develop the UI. You can open activity main.
xml and build the UlI, as shown in Figure 6-12. You need two EditText
components to hold the full name and e-mail data.

145

CHAPTER6 MOBILE BACK END

Type your full name

Your email

¥ Common Attributes

* All Attributes

Figure 6-12. Designing the Android UI

Now you can write the Android program. Since you access Azure
Functions with HTTP triggers, you don’t need to use the Azure SDK
directly. You can use any Android library to access HTTP/HTTPS. For this
demo, you'll use the Volley library to perform HTTP accesses. You can get
further information about Volley at https://developer.android.com/
training/volley.

To work with the Volley library, you can add this library on build.
gradle for the app. You add this library in dependencies{} as follows:

dependencies {

implementation 'com.android.volley:volley:1.1.1'

You add the logic for the program by clicking the Register button. First,
you can obtain the full name and e-mail from the EditText components.
Then, you construct JSON data to be sent to Azure Functions. You also

146

https://developer.android.com/training/volley
https://developer.android.com/training/volley

CHAPTER6 MOBILE BACK END

define the URL for Azure Functions to put in the url variable. You can get
the Azure Functions URL from the Azure Functions dashboard. Open your
Azure Functions program and then click “Get function URL,” as shown

in Figure 6-13. Put this value into the url variable. You also construct
RequestQueue from the Volley object.

try {
EditText fullName = (EditText) findViewById(R.id.txtFullName);

EditText email = (EditText) findViewById(R.id.txtEmail);
RequestQueue queue = Volley.newRequestQueue(this);

final String url = "https://regazurefunctions.
azurewebsites.net/api/RegAzureFunc";

JSONObject jsonBody = new JSONObject();
jsonBody.put("fullname", fullName.getText());
jsonBody.put("email”, email.getText());

final String requestBody = jsonBody.toString();

N =

Home > All resources > RegAzureFunctions - RegAzureFune

RegAzureFunctions - RegAzureFunc

Figure 6-13. Getting the Azure Functions URL

147

CHAPTER6 MOBILE BACK END

Next, send your JSON data to the Azure Functions server. You
can use Volley to implement the sending process. You construct the
StringRequest object to listen for onRensponse() and ExrrorListener().
Write all the information into the Log object so you can monitor these
messages.

StringRequest postRequest = new StringRequest(Request.Method.
POST, url,
new Response.Listener<String>()

{
@verride
public void onResponse(String response) {
// response
Log.i("VOLLEY", response);
}
}’
new Response.ErrorListener()
{
@verride
public void onErrorResponse(VolleyError error) {
// error
Log.e("VOLLEY", error.getMessage());
}
}

Override some methods on StringRequest such as
getBodyContentType() to set JSON as the body content type. You also
override the getBody () method to send your JSON data into the Volley
object.

148

) {

};

CHAPTER6 MOBILE BACK END

@verride
public String getBodyContentType() {
return "application/json; charset=utf-8";
}
@verride
public byte[] getBody() throws AuthFailureError {

try {
return requestBody == null ? null : requestBody.
getBytes("utf-8");

} catch (UnsupportedEncodingException uee) {
VolleyLog.wtf("Unsupported Encoding while trying to
get the bytes of %s using %s", requestBody, "utf-8");
return null;

}

@verride
protected Response<String> parseNetworkResponse(NetworkResp
onse response) {
String responseString = "";
if (response != null) {
responseString = String.valueOf(response.statusCode);
// can get more details such as response.headers
}
return Response.success(responseString,
HttpHeaderParser.parseCacheHeaders(response));

149

CHAPTER6 MOBILE BACK END

Now pass the StringRequest object into the RequestQueue object. You
also show a notification to the user using the Toast object. You catch all
errors with try-catch in your code.

queue.add(postRequest);

Toast.makeText(getApplicationContext(),
"Data was sent to Azure Queue", Toast.LENGTH SHORT)
.show();
}
catch (Exception e) {
Toast.makeText(getApplicationContext(),
e.getMessage(), Toast.LENGTH_SHORT)
.show();

Last, set the permission for your Android app to be able to work on the
Internet. Put this in the AndroidManifest.xml file:

<uses-permission android:name="android.permission.INTERNET" />

Save all your code. Now you can build and run this program to the
Android emulator, as shown in Figure 6-14. Fill in the full name and e-mail.
Then, click the Register button to send the data to Azure Functions. Make
sure your Android emulator has Internet access to enable users to submit
data to Azure Functions.

150

15K)

limitd
ipabi

4

dure,

1

A

RegistrationApp

N

™ Jean

jean@email.com

REGISTER

Data was sent to Azure Queve

CHAPTER6 MOBILE BACK END

¥
ll
Y 0439

Figure 6-14. Android application accessing Azure Functions

After clicking, you can check Azure SQL Database. You should see

your data in Azure SQL Database. You can perform a SELECT query on
the UserReg table. Figure 6-15 shows the data that we sent to Azure SQL

Database.

151

CHAPTER6 MOBILE BACK END

— Alcertieritin et i

Query editor (preview)

ditor (preview) *

* Bugh Frewovery T openguery & Swvequery % Bpondaass o + Bporidstass ooy W Feedback

agurefuncdb (agusk) [9] el

B Run

1 select * from UserReg
Shaming lemiied okt explores here,
For Aol capatabty ploase ogen S30T.

= C Tables
¢ [l dbosensor
¢ Edbotodo
* [b Liserfieg
b Oviews

* £ 5tored Procedures
Results Mossages

L] LM [POSTED

1 Agus Kumiawan aguAk@emyemuLcom 2019-05-0ATOEIT06.57 30000
2 Agus Kurmiwan gk com o 5042 8170000
] Agus Kumiswan gk Brmpemal com V9050408 55154610000
4 sean jean@emai com 2019-05-04109:3%:15.7200000

© Quary puccesded | 5

Figure 6-15. Verifying data in Azure SQL Database

Summary

In this chapter, you learned how to access Azure Functions from an
Android application. You also developed a simple project, a user
registration application, by integrating Azure Functions and Azure SQL
Database.

In the next chapter, you will learn how to build microservices by
applying Azure Functions.

152

CHAPTER 7

Serverless
Microservices

Microservices provide scalability and availability for applications.

Developing a microservice means you are developing a loosely coupled

system and your application will be split into various services. In this

chapter, you'll explore how to build microservices with Azure Functions.
The following topics are covered in this chapter:

e Introduction to microservices
e How to implement microservices with Azure Functions

e How to develop and test microservices

Introducing Microservices

If you are a web developer, you probably have built a web application

with a database server. Some developers apply a tiers approach when
developing web applications. Figure 7-1 shows the general design of a web
application. The core business process is built in the business layer, and
the data layer is used to manage the data going to the database servers.

© Agus Kurniawan, Wely Lau 2019 153
A. Kurniawan and W. Lau, Practical Azure Functions,
https://doi.org/10.1007/978-1-4842-5067-9_7

CHAPTER 7 SERVERLESS MICROSERVICES

Business

Layer

Figure 7-1. A general design for a web application

When the number of users accessing a web application increases,
you’ll usually scale your web application. If your web application uses a
tiers approach, your design is a tightly coupled system. This means you can
scale your business and data layers.

One solution uses multiple distributions of a web application. You
can design the scalability of a web application as shown in Figure 7-2. In
this scenario, you deploy different web application instances on different
computer machines or virtual machines.

Business

Business

Business
Layer

Figure 7-2. Scaling a web application

154

CHAPTER 7 SERVERLESS MICROSERVICES

One of the disadvantages of the tiers approach to a web application is
that it is not easy to manage the data and sessions. When you change the
code in the business layer, you have to deploy the revised web application
to all the servers.

Another solution is to scale the web application to use microservices.
In this way, you separate some services from the tiers architecture. Each
service has its own business logic and data. In general, you can migrate the
web application tier-based model to the microservices model, as shown in
Figure 7-3. Each service can take care of the user data. With microservices,
you can work with different versions among services.

In this chapter, you will learn how to develop microservices using
Microsoft Azure and Azure Functions. You will create a simple demo for
handling simple transactions.

155

CHAPTER 7 SERVERLESS MICROSERVICES

Business
Layer

Figure 7-3. Migrating a web application to a microservices
architecture

In this chapter, we will focus on developing microservices with
Microsoft Azure and Azure Functions.

156

CHAPTER 7 SERVERLESS MICROSERVICES

Implementing Microservices with Azure
Functions

We have reviewed the basics of microservices. Now you will learn how

to implement microservices with Microsoft Azure. In general, you

can build microservices with Microsoft Azure easily. In fact, Microsoft
provides various cloud services to develop microservices; everything from
application services to database services can be used in your microservices
design. You can combine some Azure resources as microservice
applications. Application state data can be stored in Azure Storage or
Azure Database.

You can use Azure Service Fabric to implement a microservices
solution. You can create, deploy, and manage various containers in Azure
Service Fabric. You can review this service at https://azure.microsoft.
com/en-in/services/service-fabric. If you have a plan to build
microservices using Azure Functions, you can put the business program
into Azure Functions. To handle states and data, you can use Azure
Storage, Azure SQL Database, or other Azure storage services.

Furthermore, you can review some Azure services to build a
microservices application. Microsoft has provided some guidelines for
microservices development at https://docs.microsoft.com/en-us/
azure/architecture/microservices/.

Next, you'll see how to build a demo to develop microservices with
Azure Functions. Specifically, you'll make a simple order application.

Building a Microservices System with Azure
Functions

In this section, you'll develop a microservices application with Azure
Functions. The application will serve orders from HTTP web services and
Azure Storage. Figure 7-4 shows the demo scenario. An order can be made by

157

https://azure.microsoft.com/en-in/services/service-fabric
https://azure.microsoft.com/en-in/services/service-fabric
https://docs.microsoft.com/en-us/azure/architecture/microservices/
https://docs.microsoft.com/en-us/azure/architecture/microservices/

CHAPTER 7 SERVERLESS MICROSERVICES

calling HTTP services and Azure Storage. The application can call HTTP POST
to make a transaction. This process will be handled by Azure Functions. Azure
Functions will put this order into Azure Queue. Other applications also can
make a transaction by putting an order into Azure Queue directly.

Once an order is received by Azure Queue, your Azure Functions
application can pick up and process the transaction. All transactions will
be stored in Azure SQL Database.

&>

Azure HTTP POST Trigger <’> @

Azure Queue Trigger
= Azure SQL Database

Storage Queue

Microsoft Azure

Figure 7-4. A demo scenario for microservices with Azure Functions

To implement this demo, you should have an active account on
Microsoft Azure. Some Azure resources probably will cost money such as
Azure SQL Database.

Next, you'll create an Azure SQL Database instance.

Creating an Azure SQL Database Instance

All transactions are stored in Azure SQL Database. You can learn more
about the Azure SQL Database service at https://azure.microsoft.com/
en-us/services/sql-database/. You can create a new database server

or use an existing database. For instance, in this example, we're creating a
database called azurefuncdb.

158

https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/

CHAPTER 7 SERVERLESS MICROSERVICES

Next, you'll create a table for example purposes using SQL scripting.

For a simple data model, your order transaction has four data items:

product name, price, quantity, and buyer. So, you'll define a table called

FuncOrder with these four columns:

idis a primary key of the FuncOrder table.
productname is a product name.

price is the product price.

quantity is the quantity of the product order.
buyer is the name of the buyer.

posted is the date of the received data.

You can create the FuncOrder table using the following SQL:

CREATE

TABLE [dbo].[FuncOrder](

[id] [int] IDENTITY(1,1) NOT NULL,
[productname] [varchar](30) NOT NULL,
[price] [numeric] NOT NULL,
[quantity] [int] NOT NULL,

[buyer] [varchar](15) NOT NULL,
[posted] [datetime] NOT NULL,

CONSTRAINT [PK FuncOrder] PRIMARY KEY CLUSTERED

(

YWITH

[id] ASC
(PAD_INDEX = OFF, STATISTICS NORECOMPUTE = OFF, IGNORE_

DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON
[PRIMARY]
) ON [PRIMARY]

Go

You can run these scripts in the query editor from the database

dashboard in Azure SQL Database, or you can run this script using SQL

Server Management Studio with remoting to the Azure SQL Database server.

159

CHAPTER 7 SERVERLESS MICROSERVICES

Next, you'll create an Azure Functions project to serve all the requests
from Android applications.

Creating an Azure Functions Project

In this section, you’ll develop an Azure Functions project. As shown in
Figure 7-4, you will create two Azure Functions in one project using Visual
Studio 2019. Create a new project with the Azure Functions template with
.NET Core.

Since you have two Azure Functions functions, you can use two Azure
Functions with HTTP Trigger and Queue Trigger templates. Name them
OrderHttpApi for the HTTP trigger and OrderProcFunc for the queue trigger.

Next, you'll need to add some required libraries into your project.
Specifically, add the following required libraries via NuGet:

e Microsoft.Azure.Storage.Queue

e Microsoft.Azure.WebJobs.Extensions.Storage
o Newtonsoft.Json

o System.Configuration.ConfigurationManager
o System.Data.SqlClient

Next, create a domain object, called FuncOrder, that holds order data.
Create a file called FuncOrder. cs and then write the following code:

using System;

namespace MicroFunctions

{

public class FuncOrder

{
public int Id { get; set; }
public string ProductName { get; set; }

160

CHAPTER 7 SERVERLESS MICROSERVICES

public float Price { get; set; }
public int Quantity { get; set; }
public string Buyer { get; set; }

You can use the FuncOrder object to map your database table,
FuncOrder. To handle data processing from Azure Functions to Azure
SQL Database, you create an AzureSQLDB object. Perform a query to insert
data into Azure SQL Database. For the implementation, you can create a
file called AzureSQLDB. cs in your project. First, you define your required

libraries, as shown here:

using System;
using System.Data.SqlClient;

Next, you create a method, InsertNewOrder (), to insert data into
Azure SQL Database. For the database configuration, you read it from the
azure_sql parameter. To insert data into Azure SQL Database, you can
use an ADO.NET approach by using SQLConnection and SQLCommand to
perform SQL queries.

The InsertNewOrder () method receives a FuncOrder object that will
be inserted into Azure SQL Database. The following is the complete code
for the InsertNewOrder () method:

public class AzureSQLDB
{

public static bool InsertNewOrder(FuncOrder order)

{

string db = Environment.GetEnvironmentVariable("azure sql");

try
{

using (SqlConnection conn = new SqlConnection(db))

161

CHAPTER 7 SERVERLESS MICROSERVICES

{
conn.Open();
var text = "INSERT INTO [FuncOrder](productname,
price,quantity,buyer,posted) " +
"VALUES (@productname,@price,@quantity,
@buyer,getdate())";
using (SqlCommand cmd = new SqlCommand(text, conn))
{
cmd.Parameters.Add(new SqlParameter
("@productname”,order.ProductName));
cmd.Parameters.Add(new SqlParameter
("@price", order.Price));
cmd.Parameters.Add(new SqlParameter
("@quantity", order.Quantity));
cmd.Parameters.Add(new SqlParameter
("@buyer", order.Buyer));
cmd. ExecuteNonQuery();
}
}
}
catch (Exception)
{
return false;
}

return true;

Now you will continue to develop the Azure Functions project. There
are two functions, OrderHttpApi for the HTTP trigger and OrderProcFunc
for the queue trigger. First, let’s implement OrderHttpApi. This function

162

CHAPTER 7 SERVERLESS MICROSERVICES

listens to HTTP POST from clients. Once you receive HTTP POST data, you
parse the request body to be sent to Azure Storage Queue. You declare your
Azure Storage Queue libraries as follows:

using Microsoft.Azure.Storage; // Namespace for
CloudStorageAccount
using Microsoft.Azure.Storage.Queue; // Namespace for Queue
storage types

Then, you set Anonymous for the authorization level so you can
receive all HTTP POST requests without performing authentication
and authorization. After receiving the HTTP POST data, you send it to
Azure Storage Queue using the CloudQueue object with the order-queue
name. You call AddMessage () by passing the CloudQueueMessage object.
A configuration string for Azure Storage Queue is obtained from the
storage_queue configuration parameter. You will set it while deploying the
project. You can configure it in the Azure Functions dashboard.

The following is the complete code for OrderHttpApi:

public static class OrderHttpApi
{
[FunctionName("OrderHttpApi")]
public static async Task<IActionResult> Run(
[HttpTrigger(AuthorizationLevel.Anonymous, "post",
Route = null)] HttpRequest req,
ILogger log)

log.LogInformation("C# HTTP trigger function processed
a request.");

string requestBody = await new StreamReader(req.Body).
ReadToEndAsync();
if(!string.IsNullOrEmpty(requestBody))

{

163

CHAPTER 7 SERVERLESS MICROSERVICES

}

string storageConnection = Environment.
GetEnvironmentVariable("storage queue");
CloudStorageAccount storageAccount =
CloudStorageAccount.Parse(storageConnection);

CloudQueueClient qc = storageAccount.
CreateCloudQueueClient();

CloudQueue queue = qc.GetQueueReference("order-
queue");

queue.CreateIfNotExists();

CloudQueueMessage message = new CloudQueueMessage
(requestBody);

queue.AddMessage (message) ;

return (ActionResult)new OkObjectResult($"Succeed");

else

return new BadRequestObjectResult("Please order
data in the request body");

Now you’ll implement the OrderProcFunc function. At first, you

declare the following:

using Newtonsoft.Json;

using System.Configuration;

You will listen for incoming queue messages on the order-queue

queue. Once you receive a message, you can validate it by deserializing
with the DeserializeObject<> method. The result of the deserialization

process is the FuncOrder object. You insert this object into Azure SQL

Database using the AzureSQLDB object that you already created.

164

CHAPTER 7 SERVERLESS MICROSERVICES

The following is the complete code for OrderProcFunc:

public static class OrderProcFunc

{
[FunctionName("OrderProcFunc")]
public static void Run([QueueTrigger("order-queue",
Connection = "storage queue")]string queueltem, ILogger log)
{
log.LogInformation($"C# Queue trigger function
processed: {queueItem}");
if (queueItem.Length > 0)
{
// save into database
FuncOrder order = JsonConvert.DeserializeObject<Fun
cOrder>(queueltem);
if (AzureSQLDB.InsertNewOrder(order))
log.LogInformation($"Data was saved into Azure
SOL Database");
else
log.LogInformation($"There was error to save
data into Azure SQL Database");
}
else
{
log.LogInformation($"No data was saved into Azure
SQL Database");
}
}
}

165

CHAPTER 7 SERVERLESS MICROSERVICES

A connection string for Azure SQL Database is obtained from the
azure_sql setting. You can define the azure_sql setting when publishing
Azure Functions to Microsoft Azure. Now you can compile your Azure
Functions project. Make sure you don’t obtain errors while compiling the
project.

So, you have developed Azure Functions using Visual Studio. Next, you

will publish them.

Publishing Azure Functions

Publishing Azure Functions projects with Visual Studio is easy. Right-click
the Azure Functions project and then select the Publish menu. You can
publish your project by logging in with your existing Azure account or
import the Azure Functions profile file from Azure Functions.

After selecting the Azure profile for Azure Functions, you obtain the
publishing settings. Next, you also configure a connection string for Azure
Storage Queue and Azure SQL Database.

You should define the azure_sql setting on your project. You can get a
database connection string from Azure SQL Database. Copy a connection
string from Azure SQL Database. Click the Edit Azure App service setting
menu in Figure 7-5.

166

CHAPTER 7 SERVERLESS MICROSERVICES

Application Settings

untName=ilmustorage;Accountk

Application Settings

Remote
WEBSITE_NO T VERSION
= Add Settine Local
10.14.1

IGHTS_IN

7213aebb-82af-4a1 3 3101935

Server=tcp:funcsql.database.windows.net,1433;Initial Catalog=AzureFul Persist Securi

== Add Setting

Figure 7-5. Publish settings in Azure Functions project

You set a connection string for Azure Storage named storage_queue
(Figure 7-5), which you can get from the “Access keys” age in Azure
Storage, as shown in Figure 7-6. You can copy and paste it on
storage_queue (Figure 7-5). When you're done, click the OK button to
save these publishing settings.

167

CHAPTER 7 SERVERLESS MICROSERVICES

e e

Home > ilmustorage - Queues

ilmustorage - Access keys

Storage account

Tags

Diagnose and solve problems
Data transfer

Events

Storage Explorer (preview)

Settings

a

Access keys

Geo-replication

CORS

Configuration

Encryption

Shared access signature
Firewalls and virtual networks
Advanced security

Static website

Properties

Locks

«

* ilmustorage - Access keys

Use access keys to authenticate your applications when making requests to this Azure storage account
recommend regenerating your access keys regularly. You are provided two access keys so that you car

When you regenerate your access keys, you must update any Azure resources and applications that ac
virtual machines. Learn maore

count name

iimustorage

key1 CJ

Connection string
Det. intsPr

key2 CJ

Connection string
D

Figure 7-6. Getting a connection string from Azure Storage Queue

After you publish, you can see your functions in the Azure Functions

dashboard, as shown in Figure 7-7. Next, you will test your Azure Functions

project.

168

CHAPTER 7 SERVERLESS MICROSERVICES

Microsoft Azure B Search resources, services, and docs
» Home > All resources > ilmudata
<+ ilmudat
Function Apps
=
a 2 timudata” x Overview Flatform features
Microsoft Azure Sponsorshi
= i W swop U Restat ¥ Getpublishprofile T Reset publish profile
= Function Apps
) = Status Subscription Resource group
@) J| =P iimedata 221 © running I imudatafunc
¥ = Functions + Subscription 1D ocation
'\“) b [OrderHttpApi Southeast Asia
2 » f OrderProcFunc
0 g,)
b = Proxies Configured features
[e] e
: 2= slot i
. b 2= Stots (preview) Function app settings
]
o = Configuration
CORS Rules (5 defined)
o @ Application Insights
=N

Figure 7-7. Two deployed functions

Testing the OrderHttpApi Function

You can test your OrderHttpApi function using the web tool from Azure.
Open your OrderHttpApi function in the Azure Functions dashboard.
Click the Test tab so you can see the test tool, as shown in Figure 7-8. For
your demo, you can send some dummy order data in JSON format. You
can write this JSON data in the request body.

{

"productname":"product A",
"price": 2.55,
"quantity": 3,

"buyer":"jane"

169

CHAPTER 7 SERVERLESS MICROSERVICES

You can click the Run button to execute this tool. Technically, you
will see verbose messages during testing in the Logs window, as shown
in Figure 7-8. You also can see the response messages from the Azure

Functions server in the Logs window.

_ e

P —

ilmudata - OrderHNtpAp *

> +

[30142 Tcome. o are nom conmected to Tmp-stresming service
| i the gt 1 winis)

s = P 1 |
= foo's

Figure 7-8. Testing Azure Functions using the Azure Functions web tool

After sending data to the OrderHttpApi function, you can verify your
data in Azure SQL Database. Open your database in Azure SQL Database.
Then, perform a SQL query to see your data. You should see your data that
was sent from the web test tool. Figure 7-9 shows the result data in Azure
SQL Database.

170

CHAPTER 7 SERVERLESS MICROSERVICES

furcdb) * funcegd - S01 databases » arurefuncdb funcsgl/arurefuncdb) - Ouery edizor [preview)
fazurefuncdb) - Query editor (preview) s
* B ogin BF ot Cata Preview) e New Query W Feedback
hae st Cuery 3
arurefuncdd (agusk) 3] P—

P Run B Cancelquery 4 Savequery b Exportdaaas jiom L Export data s csv

Showing bmied chject expicrer Fere 1 select * from funcorder
For ll capiabilty plewse open $50T

* fildboTodo i
» Eldbolefeg

* D views

¥ CYStored Procedures

& Qurry succesded | 18

Figure 7-9. Displaying FuncOrder data using the query editor in
Azure SQL Database

Next, you will test the OrderProcFunc function.

Sending Orders to Azure Storage Queue

You have tested your project by sending orders to HTTP POST. The
OrderHttpApi function performed those orders. Now you can test the
process of sending orders via Azure Storage Queue directly.

For demo purposes, build a .NET Core console application to send
orders to Azure Storage Queue. After creating the .NET Core console
project, add the Microsoft.Azure.Storage.Queue library into the project
using NuGet.

171

CHAPTER 7 SERVERLESS MICROSERVICES

Next, you declare all the required libraries in your program, as shown
here:

using System;
using Microsoft.Azure.Storage; // Namespace for
CloudStorageAccount
using Microsoft.Azure.Storage.Queue; // Namespace for Queue
storage types

Now you'll write the program to send an order. Define your order data
in JSON format. You can write this code:

class Program

{
static void Main(string[] args)
{
string order = @"
{
'productname’: 'product ABC',
"price': 2.55,
"quantity': 3,
"buyer':'zahra'
}

",
)

Open Azure Storage Queue using the CloudStorageAccount object
and passing its connection string. You can get a connection string from the
Azure Storage dashboard. You can see a sample of a connection string in
Figure 7-6.

172

CHAPTER 7 SERVERLESS MICROSERVICES

After connecting to Azure Storage, open Azure Storage Queue
using CloudQueueClient and set your queue name to order-queue.
Call CreateIfNotExists() to create the order-queue queue if it is not
available. The following is the sample code:

string storageConnection = "<connection string-azure
storage queue>";

CloudStorageAccount storageAccount =
CloudStorageAccount.Parse(storageConnection);

Console.Write("Connnectting to Azure Storage
CloudQueueClient qc = storageAccount.

CreateCloudQueueClient();
CloudQueue queue = qc.GetQueueReference("order-queue");

Console.WriteLine("Connnected to Azure Storage Queue.");
Console.WritelLine("Sending data....");
queue.CreateIfNotExists();

You'll send order messages using the CloudQueueMessage object. Call
the AddMessage () method to insert the messages into the queue.

CloudQueueMessage message = new CloudQueueMessage(order);
queue.AddMessage(message) ;

Console.WriteLine("Data was sent to Azure Storage Queue");
Console.ReadlLine();

Save your project. Compile and run the project. Figure 7-10 shows

some program output from your project.

173

CHAPTER 7 SERVERLESS MICROSERVICES

[C\Program Files\dotnet\dotnet.exe - [m] *

Connnectting to Azure Storage Queue..... Connnected to Azure Storage Queue. -
Sending data....

Data was sent to Azure Storage Queue

Figure 7-10. Executing the .NET console application to send orders

You can verify your order by opening Azure SQL Database. Then, you

can perform a query to display the FuncOrder table. Figure 7-11 shows
your order data.

_» e e

dE) - Query ednor (preview)

arefuncdb) - Query editor (preview) *
Btogin BB cdit Data (Preview) o New Query W Feedback
Query 1 %
azuretuncdd (agusk) [3) —
P Run W Cancelquery 4 Savequery L Ewportdataas feon L Export data as oov
o SEmang lerited chrect explore Pase. 1 select * from funcorder N
For ful canabeay please open SSOT,
- O Tables
» ildboFuncOrder
» Eldbo.order
b Ealdbo Sermor
* Wl dboTodo
(- T
» Clviews Results Messages

» [stoced Procedures

L PROCUCTHAME PRI QUANTITY BUTTR
1 product & 1 L] jane
-] product ABC 1 1 zahrs

© Query wocseded | 05

Figure 7-11. A result of the query to display the FuncOrder table

174

CHAPTER 7 SERVERLESS MICROSERVICES

Summary

In this chapter, we reviewed what microservices are. You also learned how
to build a simple microservice with Azure. Various Azure resources were
integrated into your project. In the next chapter, you will focus on how to
build IoT telemetry by applying Azure Functions projects.

175

CHAPTER 8

loT Telemetry System

Developers can use the Internet of Things (IoT) to expand their business.
There are various ways to use the IoT with your existing applications.
Specifically, you can use Azure Functions to monitor and automate [oT
devices. In this chapter, you'll explore how to work with the IoT platform
and Azure Functions.

The following topics are covered in this chapter:

¢ Introduction to the IoT telemetry system
o Howto integrate IoT telemetry and Azure Functions

e How to build Azure Functions projects for the IoT

Introducing the loT Telemetry System

Nowadays, IoT technology drives various industry sectors. There are many
platforms for developing IoT applications today such as the Raspberry Pi,
Arduino, Beaglebone, and ESP32. You can monitor using IoT devices in
some places such as temperature, humidity, and air quality, and obtain
real-time data from those devices.

Figure 8-1 shows a general model of an IoT device. There are four
components in an IoT device: the microcontroller unit (MCU), sensor,
actuator, and network. The MCU is responsible for controlling all I/O
processing in the IoT system. The sensor is used to detect physical objects
such as temperature and humidity and convert them in digital forms. The

© Agus Kurniawan, Wely Lau 2019 177
A. Kurniawan and W. Lau, Practical Azure Functions,
https://doi.org/10.1007/978-1-4842-5067-9_8

CHAPTER 8 10T TELEMETRY SYSTEM

actuator is applied if you want to perform actions such as turning on LEDs
and motors. The network module is used to communicate with other
systems, for instance, WiFi and Bluetooth.

Actuator Sensor

YIOM}AN

MCU

Figure 8-1. A basic model of an Internet of Thing device

The IoT telemetry system is one of the IoT systems that senses physical
objects or actuates something and then sends the data to a particular
server. Most IoT telemetry systems can send massive amounts of data to
servers. This system uses various network stacks to exchange data between
IoT devices and servers.

In this chapter, you'll explore how to access Azure Functions from the
IoT telemetry system.

Integrating loT Telemetry and Azure
Functions

Microsoft provides an Azure solution to enable you to work with various
platforms including the IoT. To communicate with Microsoft Azure, you
can apply Azure IoT Hub to retrieve data from IoT devices. Azure IoT Hub
provides scalable features in order to serve massive data from IoT devices.
Azure IoT Hub can manage and monitor your IoT devices. You can find
the details of Azure IoT Hub at https://azure.microsoft.com/en-us/
services/iot-hub/.

178

https://azure.microsoft.com/en-us/services/iot-hub/
https://azure.microsoft.com/en-us/services/iot-hub/

CHAPTER 8 10T TELEMETRY SYSTEM

IoT devices can communicate with the Azure back end through Azure

IoT Hub with various standard protocols. The following is a list of the

supported protocols on Azure IoT Hub:

HTTPS
AMQP
AMQP over WebSockets
MQTT

MQTT over WebSockets

Azure Functions can be applied on Azure IoT Hub to listen for

incoming data from IoT devices and perform data processing. You can use

any program to access Azure Functions. For instance, you can store sensor

data in Azure SQL Database, as shown in Figure 8-2.

LH\ 8

"

loT Edge

Figure 8-2. A sample of an integration scenario between IoT devices
on the Azure platform

You can extend your Azure features in your local environment with

Azure IoT Edge. You can configure Azure IoT Edge as a gateway device for

all your IoT devices. You can deploy your business logic program inside

IoT Edge. A benefit of deploying workloads to Azure IoT Edge is that your

IoT devices spend less time communicating with the cloud, and these

devices even work during certain offline periods.

179

CHAPTER 8 10T TELEMETRY SYSTEM

For further information about Azure IoT Edge, you can visit the official
web site at https://azure.microsoft.com/en-in/services/iot-edge/.

loT Telemetry Data Processing

In this section, you'll learn how to develop IoT telemetry data processing.
You can use Azure Functions to perform sensor data processing. All IoT
device requests will be handled by Azure IoT Hub. Figure 8-3 shows the
demo scenario. All the IoT devices will send sensor data to the Microsoft
Azure server through Azure IoT Hub. You'll also prepare Azure Functions
to listen for incoming message on Azure IoT Hub. Once Azure Functions
receives data, Azure Functions will store that data into Azure SQL
Database.

loT Device -

Azure SQL Database

Figure 8-3. A demo scenario for IoT devices and Azure Functions

To implement the demo, you should have an active account on
Microsoft Azure. Some Azure resources probably will cost money.
Next, you'll create an Azure SQL Database instance.

Creating an Azure SQL Database Instance

Azure SQL Database is one of the Azure services that helps you manage
and process your data. If you have experience with SQL Server, you will
see that you can get the same functionality with Azure SQL Database. You
can work with Azure SQL Database without worrying about infrastructure

180

https://azure.microsoft.com/en-in/services/iot-edge/

CHAPTER 8 10T TELEMETRY SYSTEM

resources. You can learn more at https://azure.microsoft.com/en-us/
services/sql-database/.

You can start by creating a database instance with Azure SQL
Database. We'll use a small database size for our demo. You can also use
an existing Azure SQL Database instance if you have one created.

Figure 8-4 shows the Azure SQL Database dashboard. You can see a server
called funcsql and a database called azurefuncdb, as shown in Figure 8-4.

_ e et O
;

E func.sqi - SQL databases x

& Locis

B Expont remplate

Figure 8-4. The Azure SQL Database dashboard

Next, let’s create a table for demo purposes using SQL scripting. You'll
store two sensor data items: temperature and humidity. The table will be
called Sensor and will have five columns, as follows.

e idisthe primary key of the Sensor table.
e deviceid is the device ID from the IoT device.

o temperature is the sensor data for temperature.

181

https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/

CHAPTER 8 10T TELEMETRY SYSTEM

o humidity is the sensor data for humidity.
o postedis the date of the received data.

You can create the Sensor table using the following SQL:

CREATE TABLE [dbo].[Sensor](
[id] [int] IDENTITY(1,1) NOT NULL,
[deviceid] [varchar](15) NOT NULL,
[temperature] [int] NOT NULL,
[humidity] [int] NOT NULL,
[posted] [datetime] NOT NULL,
CONSTRAINT [PK Sensor] PRIMARY KEY CLUSTERED
(
[id] ASC
JWITH (PAD_INDEX = OFF, STATISTICS NORECOMPUTE = OFF, IGNORE
DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE _LOCKS = ON) ON
[PRIMARY]
) ON [PRIMARY]
GO

You can run these scripts in the query editor from the database
dashboard in Azure SQL Database. After executing SQL scripts, you can
check the table using the query editor, as shown in Figure 8-5. You should
see the Sensor table in your database.

182

_ fnisiwintoebtics it
Home > All resource

it B *» +

il

cad ke

&

CHAPTER 8

|0T TELEMETRY SYSTEM

urces * azurefuncdb - Query editor (preview)

ﬂ azurefuncdb - Query editor (preview)

* Qg =+ new Query Open query
B Overvew azurefuncdb (agusk) (4] Sy
B Activity log
'R i
ags Showing limited obgect explorer here.

For full capability please open SS0T,
¥ Diagnose and solve problems = o
. Quick stan - [Tables
£ Query editor (preview) » Edbosensor h

v Edbatodo

Suicnge b CYviews
@ Configure * C)stored Procedures

@ Geo-Replication

& Connection strings

Sync 1o other databases

@ Add Azure Search
Properties

a8 Lo

B Export template

Security

G Advanced Data Security
0 Ready

Results Messages

W reedback

Figure 8-5. Sensor table created in Azure SQL Database

devices and Microsoft Azure.

Setting Up Azure loT Hub

Next, you can set up Azure IoT Hub as a bridge between the IoT

Azure IoT Hub is used as a service interface between IoT devices and

Microsoft Azure servers. You can use a browser to start setting up Azure
IoT Hub by going to https://portal.azure.com/.

After selecting the Azure IoT Hub template, you will get a creation

form, as shown in Figure 8-6. Fill in all the required fields on this form.
Click the “Review + create” button to create a hub with Azure IoT Hub.

183

https://portal.azure.com/

CHAPTER 8 10T TELEMETRY SYSTEM

= > O @ B hipssrportalazure.com for Misrosoft /ot
Microsoft Azure £ Search resources, services, and docs I
® Home * All resources > New » loT hub
1 loT hub
Microsoft
#
= Basics Size and scale Review + create
e Create an loT Hub to help you connect, monitor, and manage billions of your loT assets. Learn More
PROJECT DETAILS
@
Select the subscription to manage deployed resources and costs. Use resource groups ke
folders to organize and manage all your resources.
(O] * Subscript
! subscription @ e .} ~
@
* Resource Group 8 loTRes Bt
2 Create new
(7] * Region @ Southeast Asla ol
<] * loT Hub Mame @ | BruDatalol o
L~}
o
X
&
0 BT vesemasns | Avtomaion optors

Figure 8-6. Creating a hub with Azure IoT Hub

Next, you can create IoT devices on Azure IoT Hub to enable you to
communicate with Microsoft Azure. Open your Azure IoT Hub dashboard.
Then, open the IoT devices menu on Azure IoT Hub. When you select
to create a new IoT device, you will obtain a creation form, as shown in

Figure 8-7.

184

CHAPTER 8 10T TELEMETRY SYSTEM

Fill in all the required fields on the form. Select “Symmetric key” for the
authentication type. Select the “Auto-generate keys” box. Make sure you
enable this device to connect to Azure IoT Hub. When you're done, click
the Save button.

After you create an IoT device on Azure loT Hub, you will see a list of
your IoT devices. You can create more IoT devices, but you will probably
be charged for additional IoT devices. See Figure 8-8.

Microsoft Azure A Search resources, services, and docs

» Home 3 All resources » limuDatalaT - loT devices » Create a device

-+ .;.;‘ Create a device O X

.
#*
=

=

= o Find Certified for Azure loT devices in the Device Catalog
- * Device ID @

smulatedioT
2 Authentication type @
8] . 5
(3 T
2 0
2
o Aut L]

v

Connact this devies 4 an f b o
:

Parent device (preview] @

Mo parent device

Set a parent device
°© Em
©

Figure 8-7. Creating an IoT device on Azure IoT Hub

185

CHAPTER 8 10T TELEMETRY SYSTEM

_ Sl Ll L
-
' limuDataloT - loT devices & x
oA
add) metresh
i Properties
[o o can use This 190l 10 view, create, update. and delete Sences on your kT Mub
B Expon template
Explorers + x tara v e W
B Chery explocer
s, i & add new clause
W 10T devices
<> Switch 10 query editor

Automanic Device Management
8 1o cdge T STATUS LAST ACTIVITY LAST STATUS UPDATE ™ aowo
o7 device configuration imulstediaT Ensbied Sas 0
Messaging

File upload
V. Mestage routing
Resiency
“ Manal fabover (preview)
Security
P Overview

@ Secusiey Alens

Figure 8-8. A list of IoT devices on Azure IoT Hub

Next, you'll build an Azure Functions project to listen for incoming
data on Azure IoT Hub.

Creating an Azure Functions Project for the loT

You can develop an Azure Functions program using the Azure web editor
and Visual Studio. You also can create functions in Azure Functions with
Azure CLI. In this section, you'll develop functions using Visual Studio 2019.

Start creating an Azure Functions project by selecting the Azure Functions
template. Then select the IoT Hub trigger. Figure 8-9 shows the project
template for Azure Functions. You can set up a storage account for your project
and set up a trigger path with message/iotsensor. Fill in the project name, for
instance, IoTFunctions. After filling in all the project fields, click the OK button.

You will get some code for your Azure Functions project. Before writing
any additional code, you need to add the prerequisite libraries. Add the
System.Data.SqlClient and Newtonsoft.Json libraries to your project
through NuGet.

186

CHAPTER 8 10T TELEMETRY SYSTEM

MNew Project - loTFunctions

Azure Functions v2 (NET Core)

ilmudataacdc

= E

Connection String setting

Http trigger loT Hub trigger
Path

messagesjiotsensor

Queue trigg

Cancel

Figure 8-9. Creating Azure Functions functions with an IoT Hub trigger

The program scenario is to listen for the IoT Hub trigger on the
messages/iotsensor path. You will receive a message from IoT devices in
the JSON format with the following format:

{
"deviceid": "<deviceid>",
"temperature":"<temperature>",
"humidity":"<humidity>"

}

You encode this JSON message and convert as a Sensor object via the
deserialization process by calling the JsonConvert.DeserializeObject()
method. This method is part of the Newtonsoft. Json library. After you
obtain the Sensor object, Azure Functions will store it in Azure SQL
Database.

187

CHAPTER 8 10T TELEMETRY SYSTEM

The Sensor object holds the device ID and sensor data such as the
temperature and humidity. You can define the Sensor object in the
Sensor.cs file. The following is the Sensor object implementation:

using System;
using System.Collections.Generic;
using System.Text;

namespace IoTFunctions

{
public class Sensor
{
public string Deviceld { set; get; }
public int Temperature { set; get; }
public int Humidity { set; get; }
}
}

You can store the Sensor object in Azure SQL Database. Define your
own database object, called AzureSQLDB, and call the InsertSensor()
method to store the data in the database on Azure SQL Database.

The following is the Azure Functions code implementation:

[FunctionName("IoTHubData")]
public static void Run([IoTHubTrigger(“"messages/iotsensor"”,
Connection = "IoTHubTriggerConnection")]EventData message,
ILogger log)
{
log.LogInformation($"C# IoT Hub trigger function processed
a message: {Encoding.UTF8.GetString(message.Body.Array)}");

if (message.Body.Array.Length > 0)
{

// save into database
var json = Encoding.UTF8.GetString(message.Body);

188

CHAPTER 8 10T TELEMETRY SYSTEM

Sensor sensor = JsonConvert.DeserializeObject<Sensor>(json);
AzureSQLDB.InsertSensor(sensor);

The AzureSQLDB object applies ADO.NET objects to manipulate data for
SQL Server. You define the InsertSensor() method to store data into Azure
SQL Database. You can use the SQLCommand object to execute the INSERT
query to store the database by calling the ExecuteNonQuery () method.

public static bool InsertSensor(Sensor sensor)

{

string db = Environment.GetEnvironmentVariable("azure sql");

try
{
using (SqlConnection conn = new SqlConnection(db))
{
conn.Open();
var text = "INSERT INTO [Sensor](deviceid,temperatu
re,humidity,posted) " +
"VALUES(@deviceid,@temperature,@humidity,getdate())";

using (SqlCommand cmd = new SqlCommand(text, conn))

{
cmd.Parameters.Add(new SqlParameter
("@deviceid", sensor.Deviceld));
cmd.Parameters.Add(new SqlParameter
("@temperature", sensor.Temperature));
cmd.Parameters.Add(new SqlParameter
("@humidity", sensor.Humidity));

189

CHAPTER 8 10T TELEMETRY SYSTEM

cmd. ExecuteNonQuery();

}
}
}
catch (Exception)
{
return false;
}

return true;

You can obtain a connection string for Azure SQL Database from
the azure_sql setting. You also pass IoTHubTriggerConnection as
the endpoint connection string for Azure IoT Hub. You can define the
azure_sql and IoTHubTriggerConnection settings when publishing Azure
Functions to Microsoft Azure.

You can also configure the project settings in the local.settings.json file.
Define the azure_sql and IoTHubTriggerConnection settings, as shown here:

{
"IsEncrypted": false,
"Values": {
"IoTHubTriggerConnection": "<INSERT_ENDPOINT IOT HUB>",
"AzurelebJobsStorage": "<INSERT_AZURE_STORAGE",
"FUNCTIONS_WORKER RUNTIME": "dotnet"
}
}

You have developed an Azure Functions project using Visual Studio.
Next, you will publish the Azure Functions project.

190

CHAPTER 8 10T TELEMETRY SYSTEM

Publishing an Azure Functions Project

Publishing an Azure Functions project with Visual Studio is easy.
Right-click the Azure Functions project and then select the Publish menu.
You can publish your project by logging in with your existing Azure account
or importing the Azure Functions profile file from Azure Functions.

On the publishing form on Visual Studio, you should configure a
connection string for IoT Hub, as shown in Figure 8-10. This connection
string consists of endpoint settings from Azure IoT Hub. Fill in your IoT Hub
endpoint for the IoTHubTriggerConnection value, as shown in Figure 8-10.

You can obtain the Azure IoT Hub endpoint from the Azure IoT Hub
dashboard. You can open the built-in endpoints menu, as shown in
Figure 8-11. Copy the value of the Event Hub - Compatible endpoint into
IoTHubTriggerConnection from Figure 8-10.

Application Settings

Local DefaultEndpointsProtocol=https;AccountName=ilmudataac4d;AccountKey=4ZSnkfqdJ5C

Remote DefaultEndpointsProtocol=https;AccountName=ilmudataac4d;AccountKey=4ZSnkfqdJ5C

loTHubTriggerConnection ,5:&:
Local* Endpoint=sb://iothub-ns-ilmudataio-1592383-04346063ef.servicebus.windows.net/;Share

Remote* [Endpoint=sb://iothub-ns-ilmudataio-1592383-04346063ef.servicebus.windows.net/;Share

FUNCTIONS_WORKER_RUNTIME
Local dotnet

Remote dotnet

FUNCTIONS_EXTENSION_VERSION

o= Add Setting

Cancel

Figure 8-10. Configuring an loT Hub trigger connection

191

CHAPTER 8 10T TELEMETRY SYSTEM

- notmail.com @
Microsoft Azure usKuRNAVAN g
#* Home > All rescurces * limuDataloT - Built-in endpoints
e .}.;' limuDataloT - Built-in endpoints 2 X
= boT Huls
* #“ m] 5]
O Search (Cris/) -1 4
1=
- 2 1P Filte Each loT hub comes with built-in system endpoints to handle system and device
— = ner
messages.
A Certificates
&) @ Built-in endpaints ~ Events
= Properties Events is the the default endpeint, and is used until custom routing rules are
T created.
O & tocks Partitions @
= Ed Export template 4
. Event Hub-compatible name @
L] = =
x Explorers \ iimudataiot
Event Hub-compatible endpoint
=2 B Query explorer e i e b, -
o p i i0-1592383 servicebuswind_.. | [Tig]
4 W 10T devices Retain for @
& O | 1 | Days
Automatic Device Management
gem, Consumer Groups @
8
” & lof Edge CONSUMER GROUPS.
& 10T device configuration
— §Default
:x‘ Messaging Create new Consumer group
@ File upload
" . «
. A iisinge routing Cloud to device messaging
&) Resliency »
-

Figure 8-11. Getting an Azure IoT Hub endpoint

Next, you can configure a connection string for Azure SQL Database.
You already defined the azure_sql setting for your project. You can get
the database connection string from Azure SQL Database. Copy the
connection string and then paste it into azure_sql in the remote section,
as shown in Figure 8-12. When you're done, click the OK button to save
these publishing settings.

After you've saved these settings, you can see your function show up in
the Azure Functions dashboard. Next, you will test your function.

192

CHAPTER 8 10T TELEMETRY SYSTEM

Application Settings

APPINSIGHTS_INSTRUMENTATIONKEY
Local

Remote

azure_sql

Local

Remote Server=tcp:funcsgl.database.windows.net,1433;Initial Catalog=AzureFuncDB;Persist Securi
FUNCTION_APP_EDIT_MODE &

Local

Remote readwrite

o= Add Setting

Figure 8-12. Configuring a database connection for Azure SQL
Database

Testing Your Azure Functions Projects

Azure Functions provides testing tools through the Azure web tool. You
can open your Azure Functions projects in the Azure Functions dashboard.
Click the Test tab so you can see the testing tools, as shown in Figure 8-13.
For this demo, you're sending sensor dummy data in JSON format. You can
write this JSON data on the request body:

{
"deviceid": "simulated dev",
"temperature":"123",
"humidity":"12"

}

193

CHAPTER 8 10T TELEMETRY SYSTEM

You can click the Run button to execute this tool. Technically, you
will see verbose messages during testing in the Logs window, as shown in
Figure 8-13. You also can see response messages from the Azure Functions

server in the Logs window.

APERGOR Soue e m
" -

iimudata - loTHubData

v log Comols PO

30190516108 40:00 weliome, you are om Comatted 1 log STreaning service

Figure 8-13. Testing Azure Functions from the Azure Functions
web tool

After sending data to Azure Functions, you can verify your data. Open
your database in Azure SQL Database. Then, perform a SQL query to see
your data. You should see your data that was sent from the web test tool.
Figure 8-14 shows your result data in Azure SQL Database.

194

CHAPTER 8 10T TELEMETRY SYSTEM

Microsoft Azure K Search resources, services, and docs

» Home > All resources * azurefuncdb - Query editor (preview)

- e a.rt.urefuncdh - Query editor (preview)

* a
= 8 Login & newauery T Openquery & Savequery W Feedback
a
Query 1
= B Cverview azurefuncdb (agusk) [9) X
B Activitylog e
selec TOm Sensor
1 lect *
- & Togs Snowing limited object explorer here.
. For full capabiity please apen S50T.
X Disgnose and solve problems
) wi Quick start - [Tables
2 A Query editor (preview) w [dbo Sensor
- Mid (P int. not aully
St :
i) deviceid fuarchar, not rull)
L © Configure 2 temperature fint, not null)
L] ® Geo-Replication S humidiy (ine, not null Resulls Messages
. sted {datetime, not null) —
& & Connection strings Biposed
+ EdboTodo simulatedioT 24 i
Sync to other databases » v
wilatedioT P 62
o & Add Azure Search » O swored Procedures i i
= B Prepsii simulatediol 20 7
£ B Lok simulatedioT n 77
& Bl Export template simulated dev 123 2
Security
° © Query succeeded | Os

BB Aduanced Nata Securine
-

Figure 8-14. Displaying sensor data using the query editor in Azure
SQL Database

Next, you will develop an IoT program to access Azure Functions.

Developing an loT Program

You have developed an Azure Functions program and already uploaded it
to Microsoft Azure. You also tested the Azure Functions program using the
web test tool from Azure Functions. Now you'll develop a program for the
IoT platform.

Microsoft has provided SDK libraries for IoT platforms. Currently,
Azure IoT SDK libraries are available as follows:

o AzureIoT SDK for C, https://github.com/Azure/
azure-iot-sdk-c

o Azure IoT SDK for Python, https://github.com/
Azure/azure-iot-sdk-python

195

https://github.com/Azure/azure-iot-sdk-c
https://github.com/Azure/azure-iot-sdk-c
https://github.com/Azure/azure-iot-sdk-python
https://github.com/Azure/azure-iot-sdk-python

CHAPTER 8 10T TELEMETRY SYSTEM

o Azure IoT SDK for Node.js, https://github.com/
Azure/azure-iot-sdk-node

o Azure IoT SDK for .NET, https://github.com/Azure/
azure-iot-sdk-csharp

o Azure IoT SDK for Java, https://github.com/Azure/
azure-iot-sdk-java

You can check your IoT devices to see whether these SDK
libraries have support for your IoT platform at https://catalog.
azureiotsolutions.com/alldevices.

For this demo, we’ll show how to develop an IoT program using .NET
Core. This program can run on an IoT platform with Windows and Linux.
For this simple scenario, you'll send random sensor data to Azure IoT
Hub. Since this program uses .NET Core, this program can run on your
computer for testing purposes.

First, your IoT device or computer needs .NET Core installed on it for
testing. If you haven'’t installed it yet, you can download and install .NET
Core at https://dotnet.microsoft.com/download.

You can creating the .NET Core program using the dotnet command.
Type this command on your terminal:

$ dotnet new console -o SimulatedIoT
$ cd SimulatedIoT/

Then, you'll add the Azure IoT SDK for .NET to your project. Type
these commands:

$ dotnet add package Microsoft.Azure.Devices.Client --version
1.20.1
$ dotnet restore

Now you can write your program. You'll write the code in a Program. cs file.

196

https://github.com/Azure/azure-iot-sdk-node
https://github.com/Azure/azure-iot-sdk-node
https://github.com/Azure/azure-iot-sdk-csharp
https://github.com/Azure/azure-iot-sdk-csharp
https://github.com/Azure/azure-iot-sdk-java
https://github.com/Azure/azure-iot-sdk-java
https://catalog.azureiotsolutions.com/alldevices
https://catalog.azureiotsolutions.com/alldevices
https://dotnet.microsoft.com/download

CHAPTER 8 10T TELEMETRY SYSTEM

First, declare all the required libraries in your project. You can include
the Azure IoT SDK in your program.

using System;

using Microsoft.Azure.Devices.Client;
using Newtonsoft.Json;

using System.Text;

using System.Threading.Tasks;

You can define a connection string for IoT Hub and the DeviceClient
object. Put your connection string for your registered IoT device in Azure
IoT Hub. You already registered your IoT device in the “{You device
connection string here}” section.

class Program

{

private static DeviceClient deviceClient;
private readonly static string connectionString =
"{Your device connection string here}";

Open your IoT device in Azure IoT Hub. Then, copy the connection
string value from IoT Hub, as shown in Figure 8-15.

197

CHAPTER 8 10T TELEMETRY SYSTEM

Microsoft Azure

i B % +

8

I's
@

calw &

® & % il &

a

5

Home > Allresources > limuDataloT - loT devices > Device details

' Device details # X
L samulatediol

R B2 Message to device 4/? Direct method i= Device twin 4 Add madule identity ¢ Regenerate keys *** More
Device Id @ simulatedloT .
Primary key @ - T
Secondary key @ . SRR R @
Connection string (primary key) @ - - Eo
Connection string (secondary key) @ oy
Connect this device to an loT hub @ .\ Enable '\’__.} Disable

Parent device & No parent device

Set a parent device

Enable distributed tracing (preview) @ (") Enable (®) Disable @ o
Module identities Configurations
0 Module icentities that are associated with this device.

MODULE IDENTITY NAME CONMECTION STATE CONMECTION STATE LAST UPDATED LAST ACTIVITY TIME

Figure 8-15. Getting a connection string from an IoT device

Next, create the SendDeviceToCloudMessagesAsync() method to

perform aloop for sending messages to Azure IoT Hub. You can generate

random values for temperature and humidity.

198

private static async void SendDeviceToCloudMessagesAsync()
{
// Initial telemetry values
double minTemperature = 20;
double minHumidity = 60;
Random rand = new Random();

while (true)
{

CHAPTER 8 10T TELEMETRY SYSTEM

int currentTemperature = Convert.ToInt32
(minTemperature + rand.NextDouble() * 15);

int currentHumidity = Convert.
ToInt32(minHumidity + rand.NextDouble() * 20);

Now construct the sensor data in JSON format. Then, perform
serialization for JSON objects using the JsonConvert.SerializeObject()
method. To send messages to Azure IoT Hub, you can call the
SendEventAsync() method from the DeviceClient object.

var Sensor = new

{
Deviceld = "simulatedIoT",
Temperature = currentTemperature,
Humidity = currentHumidity

b5

var messageString = JsonConvert.SerializeObject(sensor);
var message = new Message(Encoding.ASCII.
GetBytes(messageString));

await deviceClient.SendEventAsync(message);
Console.WriteLine("{0} > Sending message: {1}", DateTime.Now,
messageString);

await Task.Delay(15000);

Now instantiate the DeviceClient object by calling the
CreateFromConnectionString() method and passing the device
connection string. You can also set MQTT as the protocol.

private static void Main(string[] args)

{

Console.WritelLine("Simulated device is running. Ctrl-C to
exit.\n");

199

CHAPTER 8 10T TELEMETRY SYSTEM

deviceClient = DeviceClient.CreateFromConnectionString
(connectionString, TransportType.Mqtt);
SendDeviceToCloudMessagesAsync();

Console.ReadlLine();
}
Save this program. Now you can run this program by typing this
command:

$ dotnet run

This program will send messages to Azure IoT Hub. Figure 8-16 shows
some program output.

B C:\Program Files\dotnet\dotnet.exe a o %

Gimulated device is running. Ctrl-C to exit. -~

99/05/2019 23:83:35 > Sending message: {"Deviceld":"simulatedIoT","Temperature®:24,"Humidity":79}
09/65/2019 23:03:58 > Sending message: ("Deviceld”:"simulatedIoT","Temperature®:25, "Humidity™:62)
B9/85/2019 23:04:85 > Sending message: {"Deviceld”:"simulatedloT™,"Temperature”:20, "Humidity™:79}

Figure 8-16. A sample of the program output from a simulated loT
device

You can verify your sent messages in Azure SQL Database using the
query editor tool, as shown in Figure 8-17.

200

CHAPTER 8 10T TELEMETRY SYSTEM

_ il o

T T y—
[azurefuncdd - Query editor (preview)
8 Overees amsetuncdt [agusk; 4]

Top g bt ciipct splores here
1o B capady phtsss opam 5507

€ £ & Cusery sacerenden | 00

Figure 8-17. Verifying data in Azure SQL Database

loT Telemetry with the Arduino MKR1000

We have shown you how to test your IoT Hub and Azure Functions
program using a simulated IoT device. Now we’ll show you how to test your
program using an Arduino board. Not all Arduino modules can be used to
connect to Microsoft Azure. One of the Arduino boards that works is the
Arduino MKR1000. This board has already been tested for Microsoft Azure.

The Arduino MKR10000 board can connect a network through a WiFi
module and also works with an SSL network. The Arduino MKR10000
board consists of the ATSAMW?25 module with the SAMD21 Cortex-MO0+,
WINC1500 WiFi, and ECC508 CryptoAuthentication modules. For further
information about the Arduino MKR10000 board, you can visit the official
web site at https://store.arduino.cc/arduino-mkr1000.

To simulate sensor data, you can use the DHT22 sensor module that
consists of the temperature and humidity sensors. You can find this sensor
module easily in your local electronics store. Figure 8-18 shows the DHT22
sensor module’s pin layout. The DHT22 sensor module can work with 3.3V
and 5V voltages.

201

https://store.arduino.cc/arduino-mkr1000

CHAPTER 8 10T TELEMETRY SYSTEM

DHT22 pins Ny 4 i
1 vce - : v,
2 DATA W Yy W
3 NC ng TS g
~~ .h \
4 GND v, N
~
.lfl.l £ ..;.‘ : 2
ey
2 4
34

Figure 8-18. DHT22 pin layout

Next, you will perform the hardware wiring for the demo.

Hardware Wiring

In this section, you'll perform the hardware wiring before you develop a
program for Arduino. You can connect DHT22 to the Arduino MKR1000
with the following wiring:

e The DHT VCC pin is connected to the Arduino
MKR1000 VCC pin.

e The DHT GND pin is connected to the Arduino
MKR1000 GND pin.

e The DHT Data pin is connected to the Arduino
MKR1000 digital D7 pin.

202

CHAPTER 8 10T TELEMETRY SYSTEM

You can see this hardware wiring in Figure 8-19.

i : -

......

LI O I I O O O
LI B B B B B B B
* 8 8 8 8 8 e
L B B B B B B
L B B B B B B O B

fritzing

Figure 8-19. Wiring for the Arduino MKR1000 and DHT22

Next, you will see how to develop a sketch program using the

Arduino software.

Installing and Configuring the Arduino Software

You can build a sketch program using Arduino. We recommend you use
the latest version of the Arduino software. You can download this software
athttp://arduino.cc/en/Main/Software. This tool is available for the
Windows, macOS, and Linux platforms.

203

http://arduino.cc/en/Main/Software

CHAPTER 8 10T TELEMETRY SYSTEM

After installing the Arduino software, you need to install the Arduino
SAMD boards by Arduino to enable to work with the Arduino MKR1000.
You can install it by selecting Tools » Board » Boards Manager. After
clicking this menu, you should see a Boards Manager dialog. Search for
Arduino SAMD Boards by Arduino. Install these boards. After they're
installed, you should see your Arduino MKR1000 in the Arduino board list.
To perform this task, your computer should be connected to the Internet.

You also should install some libraries to enable you to work with
DHT22 and Azure IoT Hub. You can install these libraries via the Manage
Libraries dialog. You can open this dialog by clicking Sketch » Include
Library » Manage Libraries. In the dialog, search for and install the

following libraries:
e WiFil01
o RTCZero

e AzureloT
e DHT Sensor Library
e Adafruit Unified Sensor Lib

Your computer should be connected to the Internet so you can
download and install these libraries.
Next, you'll develop a sketch program using the Arduino software.

Writing a Sketch Program

In this section, you'll learn how to develop a program for the Arduino
MKR1000. This program will perform sensing through the DHT22 sensor
module to obtain the current temperature and humidity. Then, you'll send
this sensor data to Azure IoT Hub.

204

CHAPTER 8 10T TELEMETRY SYSTEM

Create a new sketch program and name the project name
ArduinoAzureIoT.ino. You'll also use the ArduinoAzureIoT.c and
ArduinoAzurelIoT.h files to manage Azure IoT Hub. First you'll work on the
ArduinoAzureIoT.1ino file

You can declare your required libraries and set the SSID name and
SSID key to connect to the existing WiFi. Change these values in your WiFi
settings:

#include "DHT.h"
#include <WiFi1o01.h>
#include "ArduinoAzureIoT.h"

#define DHTPIN 7 // Digital pin D7 connected to the DHT sensor
char ssid[] = "[wifi-ssid]"; // your network SSID (name)
char pass|]

"[wifi-ssid key]"; // your network password (use
for WPA, or use as key for WEP)
int status = WL_IDLE_STATUS;

You can also configure the Serial object with a baud rate of 9600 and
configure the DHT object with the DHT22 model type data pin on the D7
digital pin.

#tdefine DHTTYPE DHT22 // DHT 22 (AM2302), AM2321
DHT dht(DHTPIN, DHTTYPE);

void setup() {
Serial.begin(9600);
Serial.println(F("Azure IoT and DHT Demo"));

// check for the presence of the shield :

if (WiFi.status() == WL_NO SHIELD) {
Serial.println("WiFi shield not present");
// don't continue:
while (true);

}

205

CHAPTER 8 10T TELEMETRY SYSTEM

// attempt to connect to Wifi network:

while (status != WL CONNECTED) {
Serial.print("Attempting to connect to SSID: ");
Serial.println(ssid);
// Connect to WPA/WPA2 network. Change this line if using
open or WEP network:
status = WiFi.begin(ssid, pass);

if (status != WL_CONNECTED) {
// wait 10 seconds for connection:
delay(10000);
}
}

Serial.println("Connected to wifi");

dht.begin();
}

In the looping function, loop(), you can read the temperature and
humidity via the DHT22 module. Then, you send this data to Azure IoT
Hub by calling the azureiot_http run() function that is declared on the
ArduinoAzureIoT.c and ArduinoAzureloT.h files.

void loop() {

delay(20000);
int h = dht.readHumidity();
int t = dht.readTemperature();

if(h==0 || t==0) {
Serial.println(F("Failed to read from DHT sensor!"));
return;

}

206

CHAPTER 8 10T TELEMETRY SYSTEM

Serial.print(F("Humidity: "));
Serial.print(h);

Serial.print(F("% Temperature: "));
Serial.print(t);

Serial.println(F("°C "));

Serial.println("Sending data to Azure IoT");
azureiot _http run(t,h);

You implement the azureiot_http run() function on the
ArduinoAzureIoT.c and ArduinoAzureloT.h files. These files are
a modified program sample from the Azure IoT libraries. In the
ArduinoAzureloT.c file, you should change your connectionString value
to the connection string from your registered IoT device on Azure IoT Hub.

static const charx connectionString = "[device connection string]";
static int callbackCounter;
static int is_done;

Inside your azureiot_http run() function, you construct sensor data
in JSON format. Then, you send it to Azure IoT Hub.

sprintf s(msgText, sizeof(msgText), "{\"deviceId\": \"AR
DUINOMKR1000\",\"temperature\": %d,\"humidity\": %d}",
temperature,humidity);

if ((messages.messageHandle = IoTHubMessage
CreateFromByteArray((const unsigned char*)msgText,
strlen(msgText))) == NULL)

{
(void)printf("ERROR: iotHubMessageHandle is NULL!\r\n");

207

CHAPTER 8 10T TELEMETRY SYSTEM

You can see our complete program in Figure 8-20.
LN] ArduinoAzureloT | Arduino 1.8.9

ArduinaAzurelaT

#define DHTTYPE DHTZZ // DHT 22 (AMZ3R2), AMZ3Z21
DHT dht(DHTPIN, DHTTYPE);

beqin(9608);
ntln(F("Azure IoT and DHT Demo"));

£/ check for the presence of the shield :

if (WiFi.stotus() == WL_NO_SHIELD) {
Serial.printin{™WiFi shield not present™);
/7 don't continue:
while (true);

/7 attempt to connect to Wifi network:
while (status != WL_COMNECTED) {
5 ("Attempting to connect to SSID: *);

rintin(ssid);
ct to WPA/WPAZ network. Change this line if using of
WiFi.begin(ssid, pass);

if (stotus 1= WL_COMMECTED) {

Figure 8-20. Sketch program on the Arduino software

Next, you'll learn how to configure an SSL certificate on the Arduino
MKR1000.

Updating an SSL Certificate for Azure loT Hub

Before you upload your program onto your Arduino MKR1000 board, you
should update and configure your SSL certificate from your Azure IoT Hub.
If not, you will get errors because of the SSL certification.

First upload the FirmwareUpdater program into the Arduino
MKR1000. You can get this program from the program samples by
selecting File » Examples » WiFil01 » FirmwareUpdater. After uploading
the FirmwareUpdater program into the Arduino MKR1000, your board is
ready for the updated firmware for the WiFi module.

208

CHAPTER 8 10T TELEMETRY SYSTEM

You can update the WiFi firmware on the Arduino MKR1000 by clicking
Tools » WiFil011 / WiFiNINA Firmware/Certificate Updater. After clicking
the menu, you should get the dialog shown in Figure 8-21.

® WiFi101 / WiFiNINA Firmware/Certificates Updater

1. Select port of the WiFi module
If the port is not listed click "Refresh list” button to regenerate the list

fdev/cu.Bluetooth-Incoming-Port Open Updater sketch

IArduino/Genuino MKR1000 (/dev/cu.usbmode

Refresh list

Test connection

2. Update firmware
Select the firmware from the dropdown box below

WINC1501 Model B (19.6.1) (Arduino/Genuino MKR1000) B

Update Firmware

3. Update SSL root certificates

Add domains in the list below using "Add domain” button

limuDataloT.azure-devices.net:443
Add domain

Remove domain

Upload Certificates to WiFi module

Figure 8-21. Updating the firmware and configuring the SSL
certificate

Select your Arduino MKR1000 port. Then, select the firmware version
you want. I recommend you choose the latest version of the firmware.
Then, add your Azure IoT Hub domain by clicking the “Add domain”
button. Fill in your Azure IoT Hub domain. You can get this information on
the Azure IoT Hub dashboard.

Click the “Upload Certification to WiFi module” button to update the
firmware and SSL certificate. Make sure you disconnect UART accesses on
the Arduino MKR1000.

After updating the firmware and the SSL certificate, you are ready to
upload your program and test it.

209

CHAPTER 8 10T TELEMETRY SYSTEM

Testing the Program

Now you can compile and upload the sketch program. You can perform
these tasks on the Arduino software by clicking the Verify and Upload
icons. After uploading the program, you can see the program output by
opening the Serial Monitor tool by clicking Tools » Serial Monitor.

You should see your program output that sensed the temperature and
humidity from DHT22. Then, the program sends this sensor data to Azure
IoT Hub. You can see our program output in Figure 8-22.

[N [dev/cu.usbmodem14201

| Send
Humidity: S6% Temperature: 27°C

Sending data to Azure IoT

Starting the IoTHub client sample HTTP...

Info: IoT Hub SDK for C, version 1.8.@-preview.7

IoTHubClient_LL_SetMessogeCallback. . .successful.

IoTHubClient_LL_SendEventAsync accepted message [1] for transmission to IoT Hub.

Info: Fetched NTP epoch time is: 1559467272

Confirmation[@] received for message tracking id = 1 with result = I0THUB_CLIENT_CONFIRMATION_OK

Autoscroll Show timestamp Both NL & CR 9600 baud s Clear output

Figure 8-22. Program output in the Serial tool

You can verify your data was sent to Azure IoT Hub by opening
Azure SQL Database. You can perform a query to display all the data in
the Sensor table. Figure 8-23 shows the sensor data that was sent by the
Arduino MKR1000.

210

¥ editor (preview)
itor (preview)
5 togin P Edit Cata (Preview) = NewQuery T Openquery L Savequery + Exportdataas json + Exportdataas.csv ‘W Feedback
Query 1
azurefuncdb (agusk) 3} 2
b Run
1 select = from Sensor
Showing limited object explorer here.
For full capability piease open SSOT.
- O Tables
= B dboSensor
BBid (P int, not null)
= deviceid (varchar, not null)
temperature fint, not null)
E mpe : Results Messages
E humidity (int, not null) Bt
E posted (datetime, not null) 4 simulatedioT 20 79
+ B dboTodo
5 simulatediaT 21 "
b Cviews
¥ [JStwored Procedures & simulated dev 123 12
7 simulated dev 123 12
8 ARDUINOMEKR 1000 27 56
@ Query succeeded | 7s

Figure 8-23. Verifying data on Azure SQL Database

Summary

In this chapter, you learned how to access Azure Functions from

IoT devices. You also already have developed a simple project with
implementing Azure Functions, Azure IoT Hub, and Azure SQL Database.
In the next chapter, you will focus on how to work with Azure monitoring

and Application Insights.

211

CHAPTER 9

Monitoring Azure
Functions with
Application Insights

Monitoring is an essential part of the software development lifecycle.
Without proper monitoring, it would be challenging to improve an
application by identifying bugs or increasing the performance. You can
monitor Azure Functions using Application Insights.

Since Application Insights is a big topic, we will not be able to cover
every single detail of it in this chapter. Rather, you will learn about
telemetry and how to monitor Azure Functions with Application Insights
in this chapter.

Introduction to Application Insights

Application Insights, often called App Insights, is an application
performance monitoring (APM) solution that is part of the Azure platform.
Figure 9-1 illustrates how Application Insights works.

© Agus Kurniawan, Wely Lau 2019 213
A. Kurniawan and W. Lau, Practical Azure Functions,
https://doi.org/10.1007/978-1-4842-5067-9_9

CHAPTER9 MONITORING AZURE FUNCTIONS WITH APPLICATION INSIGHTS

REST API

F 3
Your App T
s =
S
e 1 | o | 1
Your App e b
L Dashboard in Azure
Application Portal
e Insights Service
Your App
¢ /5
Solava [Al pk | Azure
- x =

Figure 9-1. App Insights architecture

App Insights works by embedding a tiny instrumentation package in
your application.

App Insights supports various platforms and programming languages
(such as .NET, NodeJS, Java, PHP, etc.) through the official Application
Insights team support and through community support. For more details
about the platform support, please visit https://docs.microsoft.com/
en-us/azure/azure-monitor/app/platforms.

The App Insights package will periodically instrument your application
and ingest the telemetry data to the backend Application Insights
service. The Application Insights service will then perform the necessary
operations before displaying the reports to the dashboard. A typical report
includes the following:

o Request rates, response times, failure rates
o Exceptions and errors
o Pageviews and performance

o Diagnostic trace logs

214

https://docs.microsoft.com/en-us/azure/azure-monitor/app/platforms
https://docs.microsoft.com/en-us/azure/azure-monitor/app/platforms

CHAPTER9 MONITORING AZURE FUNCTIONS WITH APPLICATION INSIGHTS

You can learn more about the dashboard details at https://docs.
microsoft.com/en-us/azure/azure-monitor/app/app-insights-
overview#what-does-application-insights-monitor. Other advanced
reports such as smart detection and alerts leverage artificial intelligence
(AI) to alert when there is something outside of the usual pattern.

You learned about building a microservices architecture with
Azure Functions in Chapter 7. Related to this, App Insights is capable of
monitoring and instrumenting not just your app’s code but also some of
the external services that your app connects to. This capability is known
as distributed tracing. You can learn more about it at https://docs.
microsoft.com/en-us/azure/azure-monitor/app/distributed-tracing.

In addition to viewing the dashboard in the Azure portal, you can use
Power BI to connect to App Insights or export the data through the REST APL

Using an analogy, think of App Insights as an X-ray machine that will
help you diagnose what’s wrong in your body so that the doctor can cure
you accordingly. Similarly, you use App Insights to instrument your app.
When you find out what is causing the failure or performance issue, then
you can rectify it.

Provisioning Application Insights

Let’s begin this section by provisioning an App Insights instance. To do
that, navigate to the Azure portal and click “+ Create a resource.” Choose
Application Insights in the Developer Tools category, as shown in Figure 9-2.

215

https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview#what-does-application-insights-monitor
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview#what-does-application-insights-monitor
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview#what-does-application-insights-monitor
https://docs.microsoft.com/en-us/azure/azure-monitor/app/distributed-tracing
https://docs.microsoft.com/en-us/azure/azure-monitor/app/distributed-tracing

CHAPTER9 MONITORING AZURE FUNCTIONS WITH APPLICATION INSIGHTS

w1 Applicaion imicht
New

Azure Marcelplace e o Featured tee

Ihwﬁp’mp(l
. DewTest Laba

ity

rbermet of Things
S e e
Wined Feabty 0 Gtk Enterpese Server
T & Masagermont Tooks b

Meoworking . Enterprise DCAOS on Azuee
Safhuans 465 Senéoe (5205 e L

Figure 9-2. Creating an App Insights instance

Like with other Azure services, you'll need to choose your preferred
subscription and resource group in the project details. Provide the name
and choose your preferred region where your Azure Functions app is
located. In the example shown in Figure 9-3, the App Insights instance is
named AIForAzureFunctions. Then click “Review + create” to complete
the creation process.

Basics Tags Review + craate

Create an Application insights resource 1o mondtor your live web appication. With Application Irsights, you have full
observability into your application across all components and dependencies of your compilex distributed architecture. It

| anabytics 100k 1o help you diagnose issues and 1o understand what users actually do with your app. It's
ip you continuously impeove performance and usabilty. It works for a;m ©n a wide variety of platforms
ncuding NET, Node. /s and Jawa EE, hosted on-premises, hybrid, or amy public cloud, Leam b

PROJECT DETAILS

Select a subscription to manage deployed resources and costs. Use resource groups bke folders 1o organize and manage all
FOUE TRECAINCRS.

BNSTANCE DETAILS

* Region @

[— ’ Next : Tags > J

Figure 9-3. Naming the App Insights instance

216

CHAPTER9 MONITORING AZURE FUNCTIONS WITH APPLICATION INSIGHTS

After a few moments, you will be able to see the Application Insights
Overview tab, as shown in Figure 9-4. The instrumentation key, as shown
in the main section, serves as an identifier so that the App Insights package
sends the telemetry information to the App Insights back-end service. On
the left side, you'll see several menus that you can investigate and monitor
with App Insights. We will discuss some of them later in the chapter.

va o berAnsebupctoe

@ AlForazureFunctions * x

Failed reotsts & Sarear reiponas e 2

I-_...:...z.. |__.__.n.

Figure 9-4. Application Insights Overview tab

Integrating Application Insights to Azure
Functions

There are a few ways to integrate App Insights into Azure Functions. If
you are creating a few Azure Functions apps, you will have the option to
also create an App Insights instance during provisioning, as we discussed
earlier.

What you're going to do now is to integrate the App Insights instance
that you just created to Azure Functions. To do that, choose the Function
App menu in your Azure portal and then pick a function app (ideally
without an App Insights instance configured on it), as shown in Figure 9-5.

217

CHAPTER9 MONITORING AZURE FUNCTIONS WITH APPLICATION INSIGHTS

pp + PracicalAzursfunctionsChid

Function App % X PracticalAzureFunctionsCh3d

o ads 22 6ok cohomn == oe £ Poaccussenbunsoncnis B || 4 uposcasion nsignes s not configurd

Configured features

Figure 9-5. Integrating App Insights to Azure Functions

You will see a warning message in the App Insights Overview blade
indicating “Application Insights is not configured. Configure Application
Insights to capture function logs” if the Azure function app does not have
any App Insights instance configured. Simply click that warning message
to launch the App Insights blade, as shown in Figure 9-6.

1 3 Application Insights

@ Application Insights

@ Application Insights

Application Irsights helps you detect and diagnote quality ssues in your web apps and web senvices, and helps you understand what your wsers actually do with it Leam more

Create new resource

Selec resource
Recently created resources
@ ar

[

P as

9.

@ e

B

Figure 9-6. App Insights blade in the Azure portal
218

CHAPTER9 MONITORING AZURE FUNCTIONS WITH APPLICATION INSIGHTS

The next step is to choose your preferred App Insights instance and
then click OK. Once the configuration has been successfully performed,
you will be able to see the Live Stream dashboard, as shown in Figure 9-7.

Asyou can see, there isn’t any request at all.

@ Application Insights

9 Application Insights

s helps you detect and diagnose quality ssues in your web apps and web services. and helps you understand what your users actually do with it. Le

This App Service is associated with the Apphcation Insghts resource: AlForAzursFunctions {<hange)

Slowest Requests (past 24 hours)

RIQUEST NasE DURATION (#5TH)
Collecting statistically significant data set

Live Stream

Figure 9-7. Live Stream dashboard in App Insight

You are going to generate some load to verify whether the integration
has been successfully done. If your function is using the HTTP trigger, you
can simply invoke the URL using a browser or an event with a tool such as
Postman.

Navigate back to the Live Stream dashboard, and you should see that
the line chart is being updated in real time just like in Figure 9-8. This is
because of the traffic that you just generated.

219

CHAPTER9 MONITORING AZURE FUNCTIONS WITH APPLICATION INSIGHTS

Chid » Apphcation Insights

@ Application Insights

9 Application Insights

Application Insights heips you detect and d

This App Service

Slowest Requests (past 24 hours)

EIGUIEST danat DURSTION (1TH)

Live Stream

Figure 9-8. App Insights’ Live Stream dashboard with traffic

Detecting Failures and Errors in Azure
Functions with App Insights

We all know that errors are inevitable in the software development world.
Unfortunately, because not all errors are reported by end users, the
administrator or application developer will not be able to fix them.

In this section, you will learn how App Insights can help application
developers discover failures and errors in Azure Functions.

Simulating Failures in Azure Functions

In this section, you'll develop a function to perform the division operation
of two parameters. You can add this function on an existing Visual Studio
project or create a new project. Listing 9-1 shows the function’s code.

220

CHAPTER9 MONITORING AZURE FUNCTIONS WITH APPLICATION INSIGHTS
Listing 9-1. Code for Division Operation Function

using System;

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;
using Microsoft.AspNetCore.Http;

using Microsoft.Extensions.Llogging;

using Newtonsoft.Json;

namespace PracticalAzureFunctionsCh9

{

public static class Division
{
[FunctionName("Division")]
public static async Task<IActionResult> Run(
[HttpTrigger(AuthorizationLevel.Anonymous, "get",
"post", Route = null)] HttpRequest req,
ILogger log)

log.LogInformation("C# HTTP trigger function
processed a request.");

string a
string b

req.Query["a"];
req.Query["b"];

string requestBody = await new StreamReader(req.
Body) .ReadToEndAsync();

dynamic data = JsonConvert.DeserializeObject
(requestBody);

a ?? data?.a;

b ?? data?.b;

a
b

221

CHAPTER9 MONITORING AZURE FUNCTIONS WITH APPLICATION INSIGHTS

decimal result = 0;

result = decimal.Parse(a) / decimal.Parse(b);
string response = $"{a} / {b} = {result}";
log.LogInformation(response);

return (ActionResult)new OkObjectResult(response);

You may notice that the code in Listing 9-1 has not been properly
written. For example, there is no format validation to accept a number.
Another issue is the possibility of a division-by-zero exception.

Let’s deploy this function to a function app with App Insights.

Once the function has been deployed on Azure, let’s start to invoke the
function URL from the browser with the valid parameter’s value to make
sure that your function runs properly. To do that, pass parameter a with a
value of 5 and pass parameter b with a value of 2. As expected, you get a
response of 5 / 2 = 2.5, as displayed in Figure 9-9.

| . »

1B & B practicalazurefunctionse X | an 52

| “« b) '] & | https://y = x = " Nazurewebsites.net/api/Divisionfa=58b=2
5/2=25

Figure 9-9. Division operation with the valid parameter

This time you'll generate a failure by passing in an invalid format.
To do that, let’s set the parameter a with the value of 8 and set b with a
value of x. As shown in Figure 9-10, you get an HTTP 500 error response.

222

CHAPTER9 MONITORING AZURE FUNCTIONS WITH APPLICATION INSIGHTS

® &8 5 HITP 500 eror ® |+ ~

< > O @ hittps /gt £ * Lazurewebsites net/ apd Division 7a = B4k =x b

HTTP 500 error
That's odd... the website can't display this page

The site may be under maintenance or could have a programming error
Try this

* Go back 10 the last page

« Try comtacting the website's owner

+ Report this issue

Figure 9-10. HTTP 500 error of format exception

You are not done yet; let’s generate another error now by setting the
parameter a with the value 6 and set the parameter b with the value 0.
Similar to the previous step, you get another HTTP 500 error, as shown in

Figure 9-11.

® E|E|Hm'soomm * l+ ~

£ > O @ @ | https: ettt * 3. azurewebsites.net/api/Division?a « 68 <0

HTTP 500 error
That's odd... the website can't display this page

The site may be under maintenance or could have a programming error.
Try this

* Go back to the last page

« Try contacting the website's owner

* Repodt this issue

Figure 9-11. HTTP 500 error of division-by-zero exception

223

CHAPTER9 MONITORING AZURE FUNCTIONS WITH APPLICATION INSIGHTS

Viewing Failure Details in App Insights

Since you have already generated some failures, you will be viewing the
failure details in App Insights in this section. Typically, you will be able
to see data captured in the Live Stream dashboard almost in real time.
However, in other App Insights menus, typically you will be able to see the
data appear in less than five minutes.

Let’s navigate to the Azure portal. Under the App Insights menu, and
click Failures, as shown in Figure 9-12.

il AlForAzureFunctions - Failures z
-) Befresh i View in Logs (Anaiytes) ~ [l Analyze with Workbooks ~ (5 Feedback
@ Overview o e -
Activity b :
& Activitylog Operations Dependencies Exceptions Roles
sl Access control (IAM)
@ Bos Failed request count + fown
n #va probilerr A i
¥ Diagnose and solva problems Top 3rmpomiecods oy e
Inwestgate = -
== Appheation map
T Smart Detection Request count
4 Live Metrics Stream g l
P Search - - Top 3 exception types cognr | puyimng
@ Availabily i] [
A h
=3
% Performance Select operation -
B servers
OPERATION MAME COUNT (FAILEDY couNT LUl T 4
B Browser i SGQDQ&‘QF‘C} e FM" FRTERING
I Qverall 1 2
Traubleshacting quides [pre
] 99 5 2

Monitoring

Alerts

Figure 9-12. Failures menu in App Insights

You can filter the time frame by changing the “Last 24 hours”
setting to your preferred time frame. You should notice that there’s
Division operation failures in the bottom section and the exception
types for the Division operation on the right side. Click the count for
DivideByZeroException to see the details. In our case, we have 2, but your

224

CHAPTER9 MONITORING AZURE FUNCTIONS WITH APPLICATION INSIGHTS

case may differ. Inmediately, you should see the failure incident’s details
such as date and time, as shown in Figure 9-13.

gs (Analytics) v E Analyze with Warkbooks @ Feedback v

an v { server

l Owverall

Top 3 response codes

COUNT
500 B}
Top 3 exception types
FormatException LI

DivideByZeroExcep.. B 2

Top 3 dependency failurgg -

Browser

FILTERING

FILTERING

FILTERING

»

Select a sample exception
Filtered on _ client Type I=...

with Exception DivideByZero...

Suggested

6/24/2019, 12:3T:43 AM
Exception while executing function: Di
vision

Problem Id
System.DivideByZercException at PracticalAzur
eFunctionsCh9.Division + < Run>d_0 MoveNex

L

Sert by

All Relevance

B/24/2019, 12:3T:43 AM

Exception while executing function: Di
vision

Problem id

System DivideByTeroException at PracticalAzur
eFunctionsCh9.Division « < Run>d_0 MoveNex

t

B/24/2019, 12:3T:43 AM

Exception while executing function: Di
vision

Problem Id

System.DivideByZeroException at PracticalAzur
eFunctionsCha.Division + < Run>d__0 MoveNex
t

Figure 9-13. Failure incident details in App Insights

You can change the sort by date. Click one of the failure incident, and
you will see another blade, as shown in Figure 9-14.

225

CHAPTER9 MONITORING AZURE FUNCTIONS WITH APPLICATION INSIGHTS

Home > AlforAzueFunctions - Falures > End-to-end transsction details
" End-to-end transaction details
O Searchresuls od Leam more

End-to-end transaction
Operation |0 acte6142c3d2714da938716/87134af6 1@

»

I - Recorst incoming) 55 Dupendocy lintgoing) k= Excepton)« Proiler vace
DNt Yo * s v
~ [practicalazurefuncrionsc L ————
A excemion spem thidetyzert a
A EXCEPTION Syvtem DinidefyTerck b
» i
=
o
-
£
o
e
o
-1
wvi
Sal3melOne [ety]

+ Create work item

A EXCEPTION
Sy

it DiviceByZercEacaption
Exception Properties Show all

Evert time

Metsage

Custom Propertics

Formanisdiieiiage

anceid
Loglevel
Caegory

Invacaticnid FITcAdSS-T152-4T54

Call Stack

Figure 9-14. End-to-end transaction details in App Insights’ Failures

menu

This provides many more details of the failure incident including the
call stack if you scroll the right pane to the lower section. Now select the
“Just my code” box in the Call Stack section, and you will be able to see
your code. This is where App Insights is really amazing as it tells you which
code triggered the DivideByZeroException; here it’s at line 31, as shown
in Figure 9-15. One of the interesting things to note is that you can also
create a work item directly on this blade if your App Insights instance is

connected to Azure DevOps.

226

~| = Profiler trace

R
i
A

CHAPTER9 MONITORING AZURE FUNCTIONS WITH APPLICATION INSIGHTS

@ Feedback
by
—+ Create work item
EXCEPTION
System.DivideByZeroException
Microsoft. Azure.WebJobs.Host.FunctioninvocationException

Syster.Runtime.ExceptionServices.ExceptionDispatchl...

[external code]

Microsoft. Azure.WebJobs.Host.Executors.FunctionExe... FunctionExe... 117
Inner exception System.DivideByZeroException handled at
System.Runtime.ExceptionServices.ExceptionDispatchinfo. Throw

System.Decimal.FCallDivide

[external code]

PracticalAzureFunctionsCh9.Division+ <Run>d__0.Mo... Division.cs 31

[external code]

Microsoft.Azure Weblobs.Host.Executors.FunctionExe... FunctionExe... 277

Related Items
"t Show what happened before and after this exception in User Flows
All available telemetry 5 minutes before and after this event @

Figure 9-15. Exception details in App Insights

Let’s check out line 31 in your function code to make sure that it

points to the right failure case. Figure 9-16 displays the screenshot of the

line 31; you can see we didn’t perform any validation of variable b before

performing the division operation.

227

CHAPTER9 MONITORING AZURE FUNCTIONS WITH APPLICATION INSIGHTS

29

3e : \ decimal [FESUlY = o;

g I = decimal.Parse(a) / decimal.Parse(b);
32 string response = $"{a} / {b} = {result}";

33 ! : 1 log.LogInformation(response);

Figure 9-16. Code that results in a failure in the function

Load Testing, Autoscaling, and Real-Time
Monitoring

We will be showing an interesting scenario in this section to showcase the
combination of three technologies. You will be using an Azure DevOps
performance test to perform load testing against Azure Functions. You will
then monitor Azure Functions, especially the autoscaling behavior, in real
time with App Insights.

Preparing Your Code

To demonstrate this scenario, let’s modify the code listing you used earlier.
To do that, right-click the Visual Studio project and select Add » New
Azure Function, as shown in Figure 9-17.

228

CHAPTER9 MONITORING AZURE FUNCTIONS WITH APPLICATION INSIGHTS

Figure 9-17. Adding a new function to the Visual Studio project

Provide the name DivisionWithRandomDelayAndDefaultParameter.
Then add the code shown in Listing 9-2 to your Azure Functions project.

Listing 9-2. Code for Division Operation Function with Random
Params and Errors

using System;

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;
using Microsoft.AspNetCore.Http;

using Microsoft.Extensions.Logging;

using Newtonsoft.Json;

using System.Threading;

229

CHAPTER9 MONITORING AZURE FUNCTIONS WITH APPLICATION INSIGHTS

namespace PracticalAzureFunctionsCh9
{
public static class DivisionWithRandomDelayAndDefault
Parameter
{
[FunctionName("DivisionWithRandomDelayAndDefaultParameter™)]
public static async Task<IActionResult> Run(
[HttpTrigger (AuthorizationLevel.Anonymous, "get",
"post", Route = null)] HttpRequest req,
ILogger log)

log.LogInformation("C# HTTP trigger function
processed a request.");

string a = req.Query["a"];

req.Query["b"];

string b

string requestBody = await new StreamReader
(req.Body) .ReadToEndAsync();
dynamic data = JsonConvert.DeserializeObject

(requestBody);
a =a ?? data?.a;
b =Db ?? data?.b;
Random randParam = new Random();
if (a == null)
a = randParam.Next(25, 50).ToString();
if (b == null)

b = randParam.Next(0, 10).ToString();

int sleepDelay = 0;
Random randDelay = new Random();
sleepDelay = randDelay.Next(0, 10);

230

CHAPTER9 MONITORING AZURE FUNCTIONS WITH APPLICATION INSIGHTS
Thread.Sleep(sleepDelay * 1000);

decimal result = 0;

result = decimal.Parse(a) / decimal.Parse(b);
string response = $"{a} / {b} = {result}";
log.LogInformation(response);

return (ActionResult)new OkObjectResult(response);

You will notice that Listing 9-2 is actually a modified version of
Listing 9-1 where you set the value of parameters a and b when they not
defined in the query string.

The value of parameter a is filled with a random number between 25
and 49. The value of parameter b is filled with a random number between 0
to 9. This is done intentionally to simulate some cases of a DivisionByZero
exception. The listing also has a sleepDelay parameter with a random
value between 0 and 9 seconds. The reason for doing this is to generate
some delay with Thread. Sleep() so that you can see Azure Functions will
provision additional servers for you to handle the other requests.

Publishing to Azure

You can build and publish the code to Azure. Once the code has been
successfully published to Azure, let’s verify it by simply accessing the
URL from a browser. If all goes well, you will see there might be a delay
in accessing the URL because of Thread.Sleep(), and you will see the
division operation for two values being shown. Obviously, you may see
different values from ours, as shown in Figure 9-18.

231

CHAPTER9 MONITORING AZURE FUNCTIONS WITH APPLICATION INSIGHTS

® = E ostart | B3 practicalazurefunctionsc X | 4

| i
- r O @ 8 | httpsy;, ewebsites.net/api/DivisionWithRandomDelayAndDefaultParameter
36 /9=4

Figure 9-18. Accessing division with default values and sleep

Refresh your browser multiple times to simulate several requests. Now
navigate to App Insights and check out the Live Stream dashboard to verify
whether the requests you made were captured in App Insights.

Generating the Load with Performance Testing

Moving on, in this section you’ll be generating a load for performance
testing with Azure DevOps. This can be done either through the Azure
portal, Azure DevOps, or even Visual Studio. Of course, you may
also choose to use your preferred load testing tools such as JMeter,
LoadRunner, Loader.IO, and so on. To streamline the experience, you will
be using the Azure portal from the App Insights menu.

Navigate to the Azure portal and look for the App Insights instance
that you created earlier in the chapter; then scroll down until you see
Performance Testing under the Configure section, as shown in Figure 9-19.

232

CHAPTER9 MONITORING AZURE FUNCTIONS WITH APPLICATION INSIGHTS

Configure

m Fail
' Properties

@, Smart Detection settings

[0 Usage and estimated costs

) Continuous export

[C‘b Performance Testing

APl Access

Work Items

Settings

n Locks

E3 Export template Ser

Support + troubleshooting

Figure 9-19. Choosing Performance Testing in App Insights

When the Performance Testing blade opens, you will see the
performance testing history, as shown in Figure 9-20.

- Performance Testing X
+ "% Set Org v
Recer]
NAMI STATD START TIndL AVG RIEP TIAM (SEC) TARGET LOAD
PerfTest01 O Completed 25/06/2019, 413 pm 59 250
PerfTest01 © Aborted 25/06/2019, 412 pm 2500

Figure 9-20. Performance testing history in the App Insights menu

You can choose to change the performance testing configuration with
another Azure DevOps account by clicking the Set Organization button.

233

CHAPTER9 MONITORING AZURE FUNCTIONS WITH APPLICATION INSIGHTS

Or you can click the New button to trigger a new performance test.
Once the new performance test blade opens, you can start by choosing the
test type, as shown in Figure 9-21.

New performance test (Previe...

CONFIGURE TEST USING @ 5 i,
Manual Test v
Test type: ManualTest B

PerfTest0l

;ENERATE LOAD FROM @
EastUs 2 ~

Figure 9-21. New performance test

There are two types of test.

e Manual Test, which simply generates an HTTP request
to the URL specified

e Web Test, which is a more advanced mode allowing
you to record a scenario and upload it as a .webtest file

In this example, choose Manual Test and put the URL of your function
in the URL box. In this example, the URL is https://domain.azurewebsites.
net/api/DivisionWithRandomDelayAndDefaultParameter. Click Done to
return to the previous blade.

Give the performance test a name such as LoadTestingAzureFunction.
You can also choose the data center region where you want the load to be
generated from. Subsequently, fill in the user load, which simulates the
request. Finally, fill in the duration of the load test in minutes. Figure 9-22
displays the performance test details we specified (1,000 user loads over a
period of five minutes). Click “Run test” to complete it.

234

https://domain.azurewebsites.net/api/DivisionWithRandomDelayAndDefaultParameter
https://domain.azurewebsites.net/api/DivisionWithRandomDelayAndDefaultParameter

CHAPTER9 MONITORING AZURE FUNCTIONS WITH APPLICATION INSIGHTS

MNew performance test (Pr... [X

JFIGURE TE NG @ N
Test type: ManualTest 1 Url

Figure 9-22. Adding details to generate the load test

The Azure portal will bring you back to the performance test history
blade, where you will see the state of the load testing initially in Queued.
You can click it to see the details of the performance test in another blade,
as shown in Figure 9-23.

235

CHAPTER9 MONITORING AZURE FUNCTIONS WITH APPLICATION INSIGHTS

LoadTestingAzureFunction O X

Porformance undor load

Figure 9-23. Acquiring resources in the performance test

As you can tell from the information, Azure DevOps needs some time
to acquire the number of resources (load test agent) on the data center
region that you defined earlier. In addition to the parameters specified on
the load test, the waiting time depends on several factors, such as the data
center capacity.

Monitoring the Live Stream Metric During
a Performance Test

In just a few moments, you can see that the performance test page turns to
In Progress: X %, which indicates that the performance test has started.

Let’s immediately open another browser or browser tab to browse to
App Insights and then the live stream metric. You can arrange the browser
windows side by side, as shown in Figure 9-24.

236

CHAPTER9 MONITORING AZURE FUNCTIONS WITH APPLICATION INSIGHTS

posirpie S e s
LoadTestingAzureFunctio A Live Metrics Stream -
Gron 1) e [rym——— TR | [. Sar
o] 8 ncoming Reques
ol - " A
gt N
Cetsh
Bl =1 Outgoing Reguests
=) Overall Health
Farzernie archet b Tl
e o, Wy Y N
H Servers @
b o s s o
’

Figure 9-24. Side-by-side view: load testing and live stream metric

The left side shows that the load test is being performed by Azure
DevOps through the App Insights menu. The right side shows the live
stream metric during the performance test. Notice the number of servers
online, which originally was only one instance before the performance
test and has now increased to 13. This proves the elasticity and autoscale
capabilities of Azure Functions during peak traffic.

Figure 9-25 shows another view after several minutes of running. In
fact, the number of servers has increased to 18 in this experiment.

237

CHAPTER9 MONITORING AZURE FUNCTIONS WITH APPLICATION INSIGHTS

¢ LoadlestingAzureFunction A Live Metrics Stream X

AN e NV

127570 mnn
13573000

= Outgoing Requests

=l Overall Health

LY NPT

o am e oo ot v

7.09 {1,000 112213

Figure 9-25. Side-by-side view: load testing and live stream metric,
bottom sections

The lower section on the left side displays the ongoing results of the
performance test, including the average response time. The lower section
on the right side shows the server’s name provisioned along with details
such as the number of requests, CPU, and memory consumed.

Cooldown Period and Result of Performance Testing

After the five-minute performance test, Azure Functions will cool down
in approximately 15 minutes since there was not that much traffic. During
the cooldown period, Azure Functions will gradually scale the number of
instances to eventually just 1.

Let’s move back to the performance test summary page. Click “Request
details,” and you will see the request details summary, as shown in
Figure 9-26.

238

CHAPTER9 MONITORING AZURE FUNCTIONS WITH APPLICATION INSIGHTS

LoadTestingAzureFunction * Request Details O x

Requests Messages

// Vi, 132288 mmw

/
|4077um
»

U

Performance under load

676 11,000 |121.22
Figure 9-26. Performance test summary and request details

In addition to the summary page, now that you have more data in
App Insights, you can navigate to other App Insights menus for further
investigation or to create alerts.

Summary

In this chapter, we introduced App Insights and showed how to integrate
itinto Azure Functions. You then learned how to use App Insights to
detect failures in Azure Functions. During the latter part of the chapter,
you combined load testing from Azure DevOps, autoscaling features from
Azure Functions, and the live stream metric from App Insights to monitor
the performance test in real time.

239

Index

A, B
AddMessage() method, 163, 173
Android application
development
Android studio, 145
Azure functions, 150, 151
data verification, 152
designing UI, 146
EditText components, 146
JSON data, 148
SDK libraries, 144
Toast object, 150
URL, 147
Application insights
architecture, 213, 214
Azure functions (see Azure
function, application
insights)
creative instance, 215, 216
distributed tracing, 215
naming, 216
overview tab, 217
typical report, 214
Application performance
monitoring (APM), 213
Apps dashboard, 12, 13

© Agus Kurniawan, Wely Lau 2019

App Service Plan, 11
Azure function, application
insights
division operation
function, 229-231
failure details
end-to-end transaction,
225,226
exception details, 226, 227
incident’s details, 225
menu, 224
result, 227, 228
failure, simulation
function’s code, 220-222
HTTP 500 error, 222, 223
parameter, 222
live stream dashboard, 219
new function, 228, 229
publish, code, 231, 232
sleepDelay parameter, 231
testing (see Performance
testing)
traffic, 219, 220
Azure functions vs. logic apps, 20, 21
azureiot_http_run() function,
206, 207
Azure IoT Hub, 178, 179, 183-186

241

A. Kurniawan and W. Lau, Practical Azure Functions,

https://doi.org/10.1007/978-1-4842-5067-9

https://doi.org/10.1007/978-1-4842-5067-9

INDEX

Azure SQL Database, 51, 180
adding client IP, 61
connection string, 62
creating table, 66
creation, 56, 58
DDL, 67
firewall configuration, 60, 61
firewall rule, 65
Function Request Table, 67
Object Explorer, 65
properties tab, 64
server creation, 57
size selection, 59, 60
SSMS, 61, 63
Visual Studio, 52, 53

adding item, 71

function app creation, 77
function deployment, 76
NuGet packages, 70
pop-up, 69

publish, 76

SQLClient library, 70
updation, 78

C

Consumption plan, 11
Cosmos DB
account creation, 84, 85
Azure portal, 84
container, 87, 88
FeedbackAndAction
container, 97, 98

242

follow-up function, 99
geo-redundancy field, 85, 86
globally distributed, 82, 83
multi-API, 82
multi-region, 86
NuGet package
manager, 99
Run() method, 101
trigger
breakpoint toggling, 94
connection string field, 92
data explorer, 95
debug, 96
function host, 93, 94
IceCreamDB database, 92
local.settings.json file, 93
queue return, 91
queue storage
verification, 97
template list, 89, 90
WebJobs.Extensions.
Storage, 90
URI address, 86, 87
verification, 101
CreateFromConnectionString()
method, 199
CRON expression, 35

D

Data definition language (DDL), 67

Development environment, 7
Distributed tracing, 215

E

Elastic pool, 57

Environment.
GetEnvironmentVariable()
method, 111

ExecuteNonQuery() method,
112, 138, 189

F

Function apps, 10, 18
creation, 77
running and testing, 78
settings, 79
tools and features, 19

Function creation
quickstart, 27
template, 26

Functions runtime, 4

G,H
get() function, 124

GetAllTodo() method, 111,113
getBody() method, 148

InsertNewOrder() method, 161
InsertRegistration() method, 137, 138
InsertSensor() method, 188, 189
InsertTodo() method, 111, 114
Integrated development

tool (IDE), 104

INDEX

IOT program, development
CreateFromConnectionString()
method, 199
creating .NET Core
program, 196
DeviceClient object, 197
program output, 200
SDK libraries, 195, 196
SendDeviceToCloudMessages
Async() method, 198
SendEventAsync()
method, 199
verifying data, 201
IoT telemetry system
Arduino MKR10000
DHT22 sensor
module, 201, 202
hardware wiring, 202, 203
installing libraries, 204
Sketch program, 205-208
SSL certificate, 208, 209
testing program, 210, 211
Azure functions, 178-180
creating Azure functions
project
ExecuteNonQuery()
method, 189
InsertSensor()
method, 188, 189
IoT Hub trigger, 187
JsonConvert.
DeserializeObject()
method, 187
template, 186

243

INDEX

IoT telemetry system (cont.)
data processing
Azure IoT Hub, 183-185
Azure SQL Database, 180-183
general model, 177, 178
IoTHubTriggerConnection
value, 191-193
IoT program (see IoT program,
development)
testing Azure functions,
193-195

J, K
JsonConvert.DeserializeObject()
method, 137, 187
JsonConvert.SerializeObject()

method, 199

L

LoadTestingAzureFunction, 234
Logic Apps, 19-21

M

Messaging and queuing systems
code editor, 45, 46
output binding, 45
SendGrid, 44
service bus creation, 39, 40
Service Bus Explorer, 41, 47
ServiceBusQueueTrigger, 41-43
templates, 38

244

Microcontroller unit (MCU), 177
Microservices

Azure functions, 158
AzureSQLDB object, 161
Azure storage queue, 171-174
CloudQueue object, 163
connection string, 168
deployed functions, 169
FuncOrder table, 159, 160
implementation, 157
OrderHttpApi, 163, 164
OrderHttpApi function,
testing, 169-171
OrderProcFunc
code, 165, 166
project publishing, 166, 167
SQL database, 158
web application
design, 154
migration, 156
scaling, 154

Mobile applications

Android, 129, 130

Azure services, 130, 131
AzureSQLDB, 137-139
database configuration, 142
HTTP POST protocol, 132
i0S, 129, 130

profile choosing, 140
project creation, 135, 136
publishing program, 140-142
SQL database, 132, 133
testing, 142-144

UserReg table, 134, 135

N,O

NoSQL databases, 81-83

P,Q

Performance testing, 232, 233
cooldown period, 238, 239
history, 233
live stream metric, 236-238
load test, 234, 235
resources, 235, 236
test type, 234

post() function, 125

practicalazurefunctionssb, 40

Premium plan, 11

Programming languages, 4

Programming model
configuration file, 25
input bindings, 24
output bindings, 24
trigger, 23

Project creation
function app, 9, 10, 12
hosting plan, 10, 11
operating system, 10
runtime stack, 11
template, 14, 16

Project template, 8

R

Relational database management
system (RDBMS), 81
Runtime 1.xvs. 2.x, 4

INDEX

S

SendDeviceToCloudMessages
Async() method, 198
SendEventAsync() method, 199
Serverless computing, benefits,
2,3,56
Service Bus queue trigger
function
creation, 42
details, 43
Integrate menu, 44, 45
SendGrid output
trigger, 48
testing, 46, 48
spinach app, 11
SQL Management
Studio (SSMS), 62

T, U
Timer-based function
creation, 36
CRON expression, 35
logs, 37
use cases, 37
Triggers, 23

Vv

Visual Studio
autogenerated code, 54
Azure function template, 52
function, locally, 55, 56
Http trigger, 53

245

INDEX

W XY,Z data verification, 119

HTTP GET, 120

HTTP POST, 118

postman tool, 121

result, 119

URL function, 121
TodoFunctions, 110, 111, 113
web system, 103

Web application
Azure functions, 104
AzureSQLDB object, 113,114
azure_sql setting, 112
client development, 122-127
database connection string, 107
HTTP trigger, 105

Webhook + API
IDE, 104 Azure Blob Storage, 31, 32
program development, 109 HTTP trigger, 30
project creation, 107, 108 Integrate menu, 29, 30
project deployment, 115-117 Manage menu, 34
project template, 109 output bindings, 33
SqlCommand object, 112 template creation, 29
SQL database, creation, 105, 106 use cases, 34
testing Web page, official, 3

246

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Chapter 1: Introduction to Azure Functions
	An Overview of Serverless Computing
	Introduction to Azure Functions
	Supported Languages
	Function Runtime

	Why Azure Functions?
	Setting Up the Development Environment
	Building a Simple Azure Functions Program
	Creating a Project
	Function App
	Operating System
	Hosting Plan
	Runtime Stack

	Creating a function in a function app
	Running the Application

	Accessing Azure Functions in the Azure Portal
	Comparing Azure Functions to Logic Apps
	Summary

	Chapter 2: Azure Functions Programming
	Exploring the Azure Functions Programming Model
	Triggers
	Input Bindings
	Output Bindings

	Creating Functions from a Template or the Quickstart
	Creating Functions from a Template
	Creating Functions from the Quickstart

	Using Webhook + API
	Integrate Menu
	Manage Menu
	Use Cases of Webhook + API

	Setting Up a Timer-Based Function
	Using a CRON Expression in NCrontab
	Creating a Timer-Based Function
	Exploring Use Cases for Timer-Based Functions

	Messaging with the Azure Service Bus Queue Trigger Template
	Creating an Azure Service Bus
	Creating an Azure Functions Function with a Service Bus Queue Trigger
	Preparing SendGrid
	Adding an E-mail Address as an Output Binding
	Updating the Azure Function Code
	Testing the Service Bus Queue Trigger Function

	Summary

	Chapter 3: Accessing Data from Azure Functions
	Overview of Azure SQL Database
	Using Visual Studio 2019
	Creating Your SQL Database
	Configuring a Firewall for a SQL Database Server
	Connecting Azure SQL Database with SQL Server Management Studio
	Configuring Azure Functions in Visual Studio
	Writing Azure Functions Code in VS
	Running and Testing Azure Function Locally
	Deploying to Azure Functions
	Running and Testing Function Apps in the Cloud
	Summary

	Chapter 4: Accessing Cosmos DB in Azure Functions
	Introduction to NoSQL Databases and Azure Cosmos DB
	Provisioning an Azure Cosmos DB Account
	Dealing with Databases, Containers, and Items
	Cosmos DB Trigger in Azure Functions
	Cosmos DB Bindings in Azure Functions
	Summary

	Chapter 5: Web Back-End System
	Introduction to Azure Functions for Web Applications
	Building a To-Do Web Application
	Creating an Azure SQL Database Instance
	Creating an Azure Functions Project
	Developing an Azure Functions Program
	Deploying Your Azure Functions Project
	Testing Azure Functions
	Developing a Client Web Application

	Summary

	Chapter 6: Mobile Back End
	Reviewing Mobile Platforms
	Introducing Azure Functions for Mobile Applications
	Building a Registration Mobile Application
	Creating an Azure SQL Database Instance
	Creating an Azure Functions Project
	Publishing an Azure Functions Program
	Testing an Azure Functions Program
	Developing an Android Application

	Summary

	Chapter 7: Serverless Microservices
	Introducing Microservices
	Implementing Microservices with Azure Functions
	Building a Microservices System with Azure Functions
	Creating an Azure SQL Database Instance
	Creating an Azure Functions Project
	Publishing Azure Functions
	Testing the OrderHttpApi Function
	Sending Orders to Azure Storage Queue

	Summary

	Chapter 8: IoT Telemetry System
	Introducing the IoT Telemetry System
	Integrating IoT Telemetry and Azure Functions
	IoT Telemetry Data Processing
	Creating an Azure SQL Database Instance
	Setting Up Azure IoT Hub
	Creating an Azure Functions Project for the IoT
	Publishing an Azure Functions Project
	Testing Your Azure Functions Projects
	Developing an IoT Program

	IoT Telemetry with the Arduino MKR1000
	Hardware Wiring
	Installing and Configuring the Arduino Software
	Writing a Sketch Program
	Updating an SSL Certificate for Azure IoT Hub
	Testing the Program

	Summary

	Chapter 9: Monitoring Azure Functions with Application Insights
	Introduction to Application Insights
	Provisioning Application Insights
	Integrating Application Insights to Azure Functions
	Detecting Failures and Errors in Azure Functions with App Insights
	Simulating Failures in Azure Functions
	Viewing Failure Details in App Insights

	Load Testing, Autoscaling, and Real-Time Monitoring
	Preparing Your Code
	Publishing to Azure
	Generating the Load with Performance Testing
	Monitoring the Live Stream Metric During a Performance Test
	Cooldown Period and Result of Performance Testing

	Summary

	Index

